МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» БОРИСОГЛЕБСКИЙ ФИЛИАЛ (БФ ФГБОУ ВО «ВГУ»)

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ Технологические основы автоматизации производства

1. Код и наименование направления подготовки:

15.03.01 Машиностроение

2. Профиль подготовки:

Технологии, оборудование и автоматизация машиностроительных производств

3. Квалификация (степень) выпускника:

Бакалавр

4. Форма обучения:

Очная, заочная

5. Кафедра, отвечающая за реализацию дисциплины:

Кафедра прикладной математики, информатики, физики и методики ее преподавания

6. Составитель(и):

Зюзин С.Е, кандидат физ.-мат. наук, доцент.

7. Методические указания для обучающихся по освоению дисциплины

Приступая к изучению учебной дисциплины, обучающиеся должны ознакомиться с учебной программой дисциплины. Электронный вариант рабочей программы размещён на сайте БФ ВГУ. Следует обратить особое внимание на:

- основные цели и задачи дисциплины;
- перечень и содержании компетенций, на формирование которых направлена дисциплина;
 - систему оценивания ваших учебных достижений;
 - учебно-методическое и информационное обеспечение дисциплины.

В ходе лекций необходимо критически осмысливать предлагаемый материал, задавать вопросы, добиваться полного понимания изучаемых вопросов темы.

Приветствуются доклады с использованием презентаций, раздаточного материала, видеороликов и т.п.

Результаты проектной работы рекомендуется оформлять в форме, позволяющей сохранить их на кафедре.

Примерный перечень вопросов, выносимых на зачёт, соответствует п.17 данной программы.

Требования к оформлению рефератов и списка цитированных источников соответствуют требованиям к оформлению курсовых работ по кафедре ПМИ-ФиМП.

8. Методические материалы для обучающихся по освоению теоретических вопросов дисциплины

Nº	Тема лекции	Рассматриваемые вопросы
IN≌	•	Рассматриваемые вопросы
1	Этапы и уровни авто- матизации производ- ственного оборудова- ния. Компьютерная интеграции производ- ства и ИПИ-технологии	Термины и определения в области автоматизации. Производственный процесс. Технологический процесс. Автоматизация. Автомат. Автоматизированное оборудование. Автоматизация рабочего цикла обработки, смены заготовок, контроля, переналадки
2	Термины и определения в области ГПС. Преимущества ГПС. Недостатки ГПС. Пути и меры по их преодолению	Основные понятия и определения в области ГПС (ГОСТ 26228-90). Понятие "гибкость" производственных систем. Виды гибкости. Факторы, определяющие гибкость системы. Количественная оценка гибкости. Преимущества ГПС по сравнению с традиционным производством
3	Основное технологическое оборудование ГПС. Система обеспечения функционирования ГПС	Система основного технологического оборудования ГПС механообработки. Технические характеристики и технологические возможности станков, включаемых в состав ГПС. Варианты автоматической смены заготовок на станках ГПС. Варианты автоматической смены столов-спутников.
4	Автоматизированная транспортно-складская система	Буферные (пристаночные), оперативные и центральные накопители АТСС, их функции и возможные компоновки. Методы расчета емкости автоматизированного склада (накопителя) ГПС. Транспортные устройства автоматизированных производств. Классификация транспортных устройств. Область использования, достоинства и недостатки конвейеров, кранов, транспортных тележек (рельсовых и безрельсовых).
5	Автоматизированные системы инструментального обеспечения	Понятие АСИО. Структура АСИО; организация обмена инструментами между подразделениями АСИО. Состав накопителей инструмента, способы автоматической доставки и замены инструментов на станках. Роль режущих инструментов в механообработке. Направления совершенствования режущих инструментов для автоматизированного производства. Методы идентификации режущих инструментов в ГПС. Методы автоматического контроля состояния

		режущих инструментов
6	Устройства и оборудование для удаления стружки.	Задачи АСУО. Способы дробления стружки, отвода ее со станков и удаления с участка. Проблемы создания АСУО и возможные пути их разрешения. Бункер для сбора стружки фирмы "Мори Сейки".
7	Устройства и оборудование систем автоматического контроля.	Назначение САК. Задачи и технические средства реализации контроля в автоматизированном производстве. Координатно-измерительные машины. Назначение, особенности, разновидности. Измерительные головки. Назначение, устройство, способы измерения.
8	Устройства и оборудование систем автоматического управления.	Основные понятия в АСУ. Управляющий автомат и объект управления, технические и программные средства АСУ. Иерархия систем управления ГАП. Классификация ЭВМ АСУ ГАП. Уровни управления ГАП. Задачи, решаемые на этапах стратегического, оперативного и тактического управления. Календарное планирование и диспетчирование производства. ГПС как сложная кибернетическая система. Связи информационные, временные, размерные, экономические, свойств материалов. Общие положения теории системного анализа.
9	Последовательность и содержание разработ-ки проекта ГПС.	Общая последовательность разработки проекта. Стадии и содержание технического задания, технического предложения, эскизного, технического и рабочего проекта. Содержание и последовательность предпроектных расчетов ГПС. Особенности нормирования технологических процессов в ГПС.

9. Методические материалы для обучающихся по подготовке к практическим/лабораторным занятиям

Задания для организации индивидуальной работы (индивидуальные задания) по дисциплине Технологические основы автоматизации производства

Nº	Тема занятия	Рассматриваемые вопросы
1	Этапы и уровни автоматизации производственного оборудования. Компьютерная интеграции производства и ИПИ-технологии	Особенности и тенденции развития современного производства. Критерии целесообразности современного производства. Классификация производственных процессов по видам энергии. Классификация автоматизированных СТО по логике управления. Классификация автоматизированных СТО по уровню организации. Производственные потоки и их взаимодействие. Разъясните конструктивно—технологические основы автоматиза-
		ции. Виды унификации машин и механизмов.
2	Термины и определения в области ГПС. Преимущества ГПС. Недостатки ГПС. Пути и меры по их преодолению	Сущность секционирования, лонгирования, агрегатирования. Сущность базового агрегатирования, компаундирования, конвертирования. Сущность модифицирования и параметризации. Разъясните понятия: комплексная деталь и комплекс признаков. Для каких целей применяются матрицы поверхностей? Как применяется типовой план обработки? Порядок составления группового плана обработки поверхностей. Порядок формирования маршрута группового технологического процесса. Перечислите показатели нормирования и загрузки производства. Сущность технического нормирования.
3	Основное технологическое оборудование ГПС. Система обеспечения функционирования ГПС	Структура штучного времени автоматизированной операции. Раскройте понятия трудоемкости и станкоемкости. Рабочее место и его специализация. Типы производства и их основные характеристики. Разъясните физический смысл величин в формуле для коэффициента закрепления операций. Разъясните связь между коэффициентом закрепления операций и

		коэффициентом многостаночного обслуживания. Как определяется загрузка персонала автоматизированного участ- ка?
		Как определяется загрузка оборудования автоматизированного участка?
		Расскажите о матричном методе контроля участка. Классификация и особенности основных классов автоматических машин.
		Автоматические линии, их структура и компоновка. Транспортировка и ориентация предметов в автоматических линиях
	Автоматизированная транспортно-складская система	Основные принципы работы накопителей, питателей и бункеров. Этапы автоматизации производства как переход от автоматической загрузки к автоматической транспортно-ориентирующей системе. Роторные линии и их особенности.
4		Циклические, рефлекторные и самонастраивающиеся автоматиче- ские машины.
		Гибкие производственные системы, их структура и особенности. Автоматизированная транспортно-складская система – назначение, особенности, основные характеристики. Классификация промышленных роботов.
		Транспортные роботы и особенности их применения. Структурная схема промышленного робота.
		Технические характеристики промышленных роботов и их выбор
	Автоматизированные	Виды размерных связей.
	системы инструмен- тального обеспечения	Пять методов достижения точности и их сущность. Приведите примеры установочных размерных связей.
		Приведите примеры операционных размерных цепей.
5		Сущность процессов изготовления деталей на спутниках.
		Как производится выверка положения заготовки на спутнике и стан-
		ке. Этапы достижения точности обработки в ГПС, статическая и дина-
		мическая настройки.
		Временные связи в автоматизированном производстве.
	Устройства и оборудо-	Цель и задачи построения временных связей.
	вание для удаления	Циклограмма автоматизированного цикла. События и их длительность как случайные величины.
	стружки.	Структура подготовительно-заключительного времени ГПМ.
6		Особенности загрузки ГПМ
		Сущность и этапы автоматического сборочного процесса.
		Признаки технологичности конструкций для автоматической сборки.
		Достижение точности при автоматической сборке методом полной взаимозаменяемости.
	Устройства и оборудо-	Достижение точности при автоматической сборке методом непол-
	вание систем автома-	ной взаимозаменяемости.
	тического контроля.	Достижение точности при автоматической сборке методом группо-
7		вой взаимозаменяемости. Достижение точности при автоматической сборке методом регули-
		рованиия. Достижение точности при автоматической сборке методом пригонки.
	Устройства и оборудо- вание систем автома-	Методы и средства транспортирования и ориентирования деталей в ГПС.
	тического управления.	Информационное обеспечение автоматизированного производства.
8		Структура интегрированной автоматизированной системы управления.
		Уровни управления автоматизированного производства.
		Структура, функции и порядок разработки управляющих программ. Разработайте управляющую программу для обработки детали типа
		Разраоотаите управляющую программу для обработки детали типа вал.
	Последовательность и	Разработайте управляющую программу для обработки детали типа
9	содержание разработ-	корпус.
	ки проекта ГПС.	Разработайте управляющую программу для обработки детали типа

фланец.
Воспользуйтесь курсовым проектом по дисциплине «Технология
машиностроения» для выявления структуры штучного времени ав-
томатизированной операции.
Выполните расчет основных показателей нормирования и загрузки
по данным о структуре штучного времени для трех операций.
Постройте циклограмму автоматизированной операции по данным
курсового проекта с использованием управляющей программы.

ГЛОССАРИЙ

для работы на практических занятиях по дисциплине Технологические основы автоматизации производства

Автоматизация – применение энергии неживой природы в производственных процессах, частично управляемых людьми.

Автоматизированная система инструментального обеспечения (АСИО) – совокупность взаимосвязанных автоматизированных средств, включающая участки подготовки инструмента, устройства его транспортирования, накопления, смены и контроля качества, обеспечивающая подготовку, хранение, автоматическую установку и замену инструмента.

Автоматизированная система контроля (САК) — совокупность взаимосвязанных автоматизированных средств активного и послеоперационного контроля.

Автоматизированная транспортно-складская система (ATCC) — совокупность взаимосвязанных автоматизированных складских и подъемно- транспортных устройств для перемещения, ориентации и хранения предметов труда и технологической оснастки.

Автоматическая линия — множество автоматически управляемых машин, механизмов, вспомогательного и подъемно-транспортного оборудования, в определенной последовательности и с определенным тактом производящая обработку или сборку изделий.

Автоматический производственный процесс — процесс, в котором для управления и воздействия на предметы труда используется энергия неживой природы и не требуется труд человека в течение длительного времени для выполнения и повторения технологических операций.

Агрегатирование – создание изделий путем сочетания унифицированных агрегатов, представляющих собой автономные узлы, устанавливаемые в различных комбинациях и количестве на общей станине или в общем корпусе: агрегатные станки, электронасосы, дизель-генераторы и т. п.

Базовое агрегатирование – применение унифицированной базовой машины для установки на нем специального оборудования различного назначения: тракторы и автомобили специального назначения.

Безлюдный производственный процесс – автоматический производственный процесс, продолжительность которого превышает одну рабочую смену.

Безотказность – свойство машин непрерывно сохранять работоспособность в течение некоторого времени, оценивается вероятностью безотказной работы, интенсивностью отказов и наработкой на отказ.

Время обслуживания рабочего места — часть штучного времени, затрачиваемая исполнителем на поддержание СТО в работоспособном состоянии и уход за рабочим местом.

Время организационного обслуживания — время, затрачиваемое на подготовку рабочего места к началу работы, уборку рабочего места в конце смены, смазку и уборку оборудования, другие аналогичные действия в конце смены.

Время технического обслуживания — время, затрачиваемое на смену инструмента, его заправку и регулировку, наладку оборудования, активное наблюдение и перемещения при многостаночном обслуживании.

Время управления – часть штучного времени, затрачиваемая персона- лом при наблюдении за технологической операцией и воздействиях на средства управления.

Вспомогательное время – часть штучного времени, затрачиваемая на выполнение приемов, необходимых для обеспечения изменения и последующего определения состояния предметов труда: установка, закрепление, раскрепление, снятие, ручное управление СТО, подвод и отвод инструмента, измерения и т.д.

Гибкая система управления – переналаживаемая в широком диапазоне система управления, создаваемая на базе электронно-вычислительных машин с комплектом программ управления, адресующих сигналы управления приводным механизмам для обеспечения заданных законов движения исполнительных звеньев.

Гибкий производственный модуль (ГПМ) — автоматизированная единица технологического оборудования с программным управлением, обладающая автономностью и приспособленная к взаимодействию с другими модулями и системами управления.

Долговечность – свойство машин сохранять работоспособность при определенных режимах работы и условиях эксплуатации с перерывами на ремонт и техническое обслуживание. Количественно она оценивается сред- ним сроком службы между ремонтами.

Единичное производство – неопределенное множество неповторяющихся операций выполняется одним исполнителем, K3o > 40.

Жесткая система управления – не переналаживаемая или переналаживаемая в узких пределах система управления, создаваемая на базе кинематических цепей машин и механизмов, обеспечивающих заданные законы движения исполнительных звеньев.

Живой труд – физический и интеллектуальный труд человека.

Завод – объединение цехов и участков по видам совместно выпускаемой продукции.

Зона обслуживания робота – часть пространства, соответствующая множеству возможных положений центра схвата, установленного на руке (манипуляторе) робота.

Зона обслуживания робота – часть пространства, соответствующая множеству возможных положений центра схвата манипулятора.

Интегрированный производственный комплекс (ИПК) – автоматизированные средства технологического оснащения и системы аппаратных и программных средств, используемые на всех стадиях создания и производства изделия (исследования, конструкторская и технологическая подготовка производства, организация и управление), и совместно осуществляющие автоматизированный производственный процесс.

Кассета – сменное устройство для ручной ориентации, хранения и транспортировки предметов.

Компаундирование (многопоточность) — параллельная установка машин, механизмов и их узлов для совместной эксплуатации: несколько двигателей на летающем аппарате, несколько насосов на одну напорную сеть, несколько одинаковых приводных механизмов в одной машине, многоместные приспособления, многошпиндельные станки и т.п.

Комплекс признаков – размеры и конструктивно-технологические характеристики поверхностей, систематизированные в таблице, с представлением форм деталей общим или отдельным для каждого изделия эскизом.

Комплексная деталь – реальная или условная деталь, содержащая все признаки, характерные для деталей группы, и являющаяся их конструктивнотехнологическим представителем.

Конвертирование – применение базовой модели изделия в новых условиях, с новым рабочим телом или по новому назначению: переоснащение двигателей внутреннего сгорания для работы с различными видами топлива или применения в качестве автотракторного, судового, авиационного и т.п.

Конкурентоспособность – это совокупность показателей качества и стоимости товаров, определяющая их предпочтительность для потребителя.

Кооперировано-ручное время — часть штучного времени, затрачиваемая персоналом при выполнении технологической операции с применением СТО, но без использования энергии неживой природы.

Кооперировано-ручной метод выполнения технологического процесса – используется энергия людей, применяющих средства технологического оснащения.

Коэффициент конкурентоспособности — отношение доходов потребителя от использования изделия к затратам потребителя на приобретение и эксплуатацию изделия за весь период использования.

Коэффициент многостаночного обслуживания – отношение станкоемкости и трудоемкости. Коэффициент синхронизации – отношение такта станка или группы станков-дублеров к такту выпуска.

Коэффициентом закрепления операций – число различных операций, выполняемых на одном рабочем месте.

Коэффициентом закрепления операций средний — отношение числа 130 различных операций к числу рабочих мест.

Крупносерийное производство — несколько различных ритмично по- вторяющихся операций выполняются одним исполнителем, 1 < Кзо < 10. Линия расположение оборудования в порядке выполнения операций.

Лонгирование — увеличение размера изделия в одном направлении при сохранении поперечного сечения: конвейеры, шестеренчатые насосы, зубчатые передачи, вальцовочные машины и т. п.

Магазин – устройство для ручной ориентации предметов, их хранения и подачи в позицию предоперационного базирования.

Маршрут технологический – последовательность прохождения заготовки, детали или сборочной единицы по цехам и производственным участкам предприятия при выполнении технологического процесса изготовления или ремонта.

Маршрутное описание технологического процесса – сокращенное описание всех технологических операций в маршрутной карте в последовательности их выполнения без указания переходов и технологических режимов.

Маршрутно-операционное описание технологического процесса — сокращенное описание технологических операций в маршрутной карте в последовательности их выполнения с полным описанием отдельных операций в других технологических документах.

Массовое производство – одна операция выполняется одним или не- сколькими исполнителями в течение всего отчетного периода, K3o < 1.

Матрица поверхностей – математическая модель технологической группы, в которой деталь описывают матрицей-столбцом или матрицей- строкой, содержащей коды конструктивно-технологических признаков.

Машинно-ручное время – часть штучного времени, затрачиваемая персоналом в период применения автоматизированных СТО.

Мелкосерийное производство – определенное, не планируемое множество операций выполняется одним исполнителем, 20 < K30 < 40.

Методы достижения точности: см. ниже. Метод полной взаимозаменяемости — заключается в обеспечении гарантированной точности замыкающего звена размерной цепи за счет высокой точности составляющих звеньев.

Метод неполной взаимозаменяемости — заключается в 100% контроле составляющих звеньев, отсортировке звеньев с неудовлетворительной точностью и подборе сочетаний составляющих звеньев, обеспечивающих достижение точности замыкающего звена.

Метод регулирования – заключается в достижении точности замыкающего звена за счет регулирования одного или нескольких составляющих звеньев.

Метод групповой взаимозаменяемости — заключается в 100% контроле составляющих звеньев, отсортировке звеньев с неудовлетворительной точностью и формировании нескольких размерных групп, обеспечивающих достижение точности замыкающего звена.

Метод пригонки — заключается в достижении точности замыкающего звена за счет дополнительной обработкой одного из составляющих звеньев.

Механизация – применение энергии неживой природы в производственных процессах, управляемых людьми.

Модифицирование — приспособление изделия к новым условиям работы без изменения конструкции: хладостойкие материалы, антикоррозионные материалы, дополнительные системы и способы подготовки рабочего тела, специальные покрытия, уплотнения и т.п.

Надежность — свойство машины выполнять функции, сохраняя во времени значения эксплуатационных показателей в пределах, соответствующих заданным режимам, условиям использования, технического обслуживания и ремонта.

Накопитель – устройство для хранения и подачи к питателю предварительно ориентированных предметов.

Неперекрытое машинное время – часть штучного времени, равная времени функционирования автоматизированных СТО без участия персонала.

Неперекрытое ручное время — сумма ручного и кооперировано — ручного времени: Объекты информационных потоков — конструкторская и технологическая

документация, программы обработки и испытаний, управляющие программы, проекты планов, производственных заданий, отчеты и т. д.

Объекты материальных потоков – материалы, заготовки, детали, сборочные единицы, готовые изделия, комплекты, вспомогательные мате- риалы, формообразующий, контрольный, измерительный инструмент, технологическая оснастка и отходы производства.

За начало отсчета циклограммы принимается начало автоматизированного цикла, а звенья циклограммы представляют длительность событий.

Число изделий в цикле – число изделий, обрабатываемых одновременно в одном цикле.

Штабелер – подъемно-транспортное устройство, состоящее из колонны с грузоподъемной платформой, на которой смонтирован выдвижной телескопический грузозахват.

Штучное время — интервал времени, определяемый отношением времени цикла к числу изделий в цикле.

Этап – часть технологического процесса, характеризуемая определен- ной точностью и качеством получаемой поверхности.

10. Тематика рефератов/докладов/эссе, методические рекомендации по выполнению контрольных и курсовых работ, иные материалы

Темы рефератов по дисциплине Технологические основы автоматизации производства

- 1. Автоматизация рабочего цикла машины, автоматизация поточного производства.
 - 2. Числовое программное управление.
- 3. Гибкие производственные системы, гибкие автоматизированные производства.
 - 4. Гибкие автоматические заводы, малолюдные цехи и заводы.
 - 5. Безотказные и самовосстанавливающиеся производственные системы.
 - 6. Самообновляющиеся производственные системы.
 - 7. Повышение технологичности конструкций машин и их агрегатов.
- 8. Создание технологических процессов и технологического оборудования с оптимальной концентрацией простейших операций.
- 9. Широкое применение различного рода автоматических (автоматизированных линий и гибких производственных систем в качестве основы автоматизации массового, серийного и мелкосерийного производств.
 - 10. Автоматизация загрузки и разгрузки технологического оборудования.
- 11. Автоматизация транспортировки и контроля изделия (детали), а также удаления отходов.
- 12. Автоматизация управления технологическими и производственными процессами.