МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» БОРИСОГЛЕБСКИЙ ФИЛИАЛ (БФ ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой естественнонаучных и общеобразовательных дисциплин

> С.Е. Зюзин 31.05.2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.О.05.04 Алгебра и теория чисел (с линейной алгеброй)

1. Код и наименование направления подготовки:

44.03.05 Педагогическое образование (с двумя профилями подготовки)

2. Профили подготовки:

Математика. Информатика и информационные технологии в образовании

- 3. Квалификация выпускника: бакалавр
- 4. Форма обучения: очная, заочная
- **5. Кафедра, отвечающая за реализацию дисциплины:** естественнонаучных и общеобразовательных дисциплин
- 6. Составитель программы: Л.В. Лободина, кандидат педагогических наук, доцент
- 7. Рекомендована: Научно-методическим советом Филиала от 25.04.2023 протокол № 7

8. Учебный год: ОФО: 2023-2024, 2024-2025 **Семестры:** 2-4

3ФО: 2023-2024, 2024-2025, 2025-2026 Семестры: 2-5

9. Цели и задачи учебной дисциплины:

Целью учебной дисциплины «Алгебра и теория чисел (с линейной алгеброй)» является обеспечение фундаментальной математической подготовки как основы будущей профессиональной деятельности; формирование мировоззрения и развитие личности будущего педагога.

Задачи учебной дисциплины:

- дать представление о месте и роли алгебры и теории чисел в системе математических наук:
- сформировать основные понятия курса алгебры и теории чисел;
- сформировать и развить доказательное мышление;
- сформировать навыки применения аппарата алгебры и теории чисел к решению задач в разных областях математики и других естественных наук;
- сформировать у студентов навыки работы с учебной, научной и научно-методической литературой.

При проведении учебных занятий по дисциплине обеспечивается развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений.

10. Место учебной дисциплины в структуре ООП:

Дисциплина «Алгебра и теория чисел (с линейной алгеброй)» входит в блок Б1 «Дисциплины (модули)» и является дисциплиной обязательной части образовательной программы. Для освоения дисциплины «Алгебра и теория чисел (с линейной алгеброй)» необходимы знания, умения, навыки, сформированные в ходе изучения дисциплин школьного курса математики. Изучение данной дисциплины является необходимой основой для последующего освоения дисциплин «Математический анализ», «Геометрия», «Математическая логика и теория алгоритмов», «Дискретная математика», «Элементарная математика».

Условия реализации дисциплины для лиц с OB3 определяются особенностями восприятия учебной информации и с учетом индивидуальных психофизических особенностей.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ОПК-8	Способен осуществлять педагогическую деятельность на основе специальных научных знаний	ОПК-8.4	Демонстрирует специальные научные знания в соответствующей предметной области	Знать: - основные принципы и процедуры научного знания в педагогической деятельности; методы критического анализа и оценки научных достижений и исследований в области педагогики, педагогических исследований; систему основных понятий, их логических взаимосвязей, технологические приемы учебной дисциплин предметной области «Математика и информатика». Уметь: - применять основные принципы и процедуры научного знания в педагогической деятельности; использовать методы критического анализа и оценки научных достижений в области педагогики и в предметной области «Математика и информатика»; организовывать научное исследование в области педагогики

				с использованием специальных научных знаний в предметной области «Математика и информатика»; оперировать специальными научными знаниями в предметной области «Математика и информатика» для решения задач профессиональной деятельности Владеть: - навыками отбора и систематизации основных идей, результатов исследований в области педагогики и в предметной области «Математика и информатика»; определения и формулирования педагогической задачи, проектирования педагогического процесса для ее решения, в том числе на основе специальных научных знаний в предметной области «Математика и информатика»
		ПК-3.1	Демонстрирует знание основ общетеоретически х и профильных дисциплин в объеме, необходимом для решения педагогических, методических и организационно-управленческих задач	Знать: - основы общетеоретических и профильных дисциплин в объеме, необходимом для решения педагогических, методических и организационно-управленческих задач; связь теоретических основ и технологических приёмов учебной дисциплины с содержанием предметной области «Математика и информатика» Уметь: - использовать знание основ учебных дисциплин предметной области
ПК-3	Способен осваивать и использовать базовые научно- теоретические знания и практические умения по предмету в профессионально й деятельности	ПК-3.2	Применяет навыки комплексного анализа и систематизации базовых научнотеоретических знаний предметной области «Математика и информатика» для решения профессиональны х задач (в соответствии с профилем и уровнем обучения)	«Математика и информатика» для перевода информации с естественного языка на язык предметной области «Математика и информатика» и обратно; применять теоретические знания в описании процессов и явлений в различных областях знания; использовать преимущества технологических приемов учебных дисциплин предметной области «Математика и информатика» при решении задач школьного курса. Владеть: - конструктивными умениями как одним из главных аспектов профессиональной культуры будущего педагога; материалом учебных дисциплин предметной области «Математика и информатика» на уровне, позволяющем формулировать и решать задачи, возникающие в ходе учебной деятельности по преподаваемым предметам, а также в практической деятельности, требующие углубленных профессиональных знаний; навыками формализации теоретических и прикладных практических задач

12. Объем дисциплины в зачетных единицах/час. — 10/360.

Форма промежуточной аттестации зачет с оценкой, экзамен.

13. Трудоемкость по видам учебной работы

ОФО

	Трудоемкость					
Diag vario	Suoŭ nofo r u		По семестрам			
вид учес	бной работы	всего семестр се		семестр №3	семестр №4	
Контактная работа		168	36	52	80	
в том числе:	лекции	76	18	18	40	
в том числе.	практические	92	18	34	40	
Самостоятельна	я работа	156	36	56	64	
Промежуточная аттестация – зачет с оценкой, экзамен		36	_	0	36	
V	того:	360	72	108	180	

3ФО

	_		Трудоемкость					
Вид учебной работы			По семестрам					
BNA y lo	опол рассты	Всего	семестр №2			семестр №5		
Контактная работа		44	14	12	10	8		
D TOM 11140E0:	лекции	20	6	6	4	4		
в том числе:	практические	24	8	6	6	4		
Самостоятельна	я работа	303	58	92	98	55		
Промежуточная аттестация – зачет с оценкой, экзамен		13	_	4	_	9		
V	1того:	360	72	108	108	72		

13.1. Содержание дисциплины

Nº п/п	Наименование раздела дисциплины	Содержание раздела дисциплины 1. Лекции	Реализация раздела дисциплины с помощью онлайн-курса, ЭУМК *
1.1	Алгебраические структуры	Бинарные отношения и их свойства. Алгебраические операции и их основные свойства. Алгебраические структуры с одной бинарной операцией. Простейшие свойства групп. Алгебраические структуры с двумя бинарными операциями. Алгебраические системы. Гомоморфизм и изоморфизм алгебраических систем.	-
1.2	Матрицы и операции над ними	Операции над матрицами и их свойства. Элементарные преобразования матриц.	-
1.3	Векторные пространства	Понятие векторного пространства над полем, его простейшие свойства. Подпространство. Сумма подпространств и прямая сумма подпространств. Линейная зависимость и независимость систем векторов. Основные свойства линейной зависимости. Ранг матрицы. Базис и размерность векторного пространства. Изоморфизм векторных пространств.	-
1.4	Системы линейных уравнений	Системы линейных уравнений (СЛУ): основные понятия. Равносильность СЛУ. Элементарные	_

		преобразования СЛУ. Теорема Кронекера-Капелли.	
		Решение СЛУ методом Гаусса. Однородная СЛУ,	
		её фундаментальная система решений.	
1.5	Определители и их	Перестановки. Подстановки. Свойства	
	свойства	определителей. Разложение определителей по	
		строке или столбцу. Условие вырожденности	
		квадратной матрицы. Теорема об определителе	_
		произведения. Миноры и алгебраические	_
		дополнения. Вычисление ранга матрицы методом	
		окаймляющих миноров. Решение СЛУ методом	
		Крамера.	
1.6	Линейные	Понятие линейного преобразования и его	
	преобразования и их	простейшие свойства. Запись линейного	
	свойства	преобразования (оператора) в координатах.	
		Матрица линейного оператора. Нахождение	
		координат образа вектора при линейном	
		преобразовании. Связь между координатами	
		вектора при переходе от одного базиса к другому.	
		Обратимость матрицы перехода от одного базиса к	_
		другому. Связь между матрицами линейного	
		преобразования в различных базисах. Операции	
		над линейными преобразованиями. Ранг и дефект	
		линейного оператора. Инвариантные	
		подпространства. Собственные значения и	
		собственные векторы линейных операторов.	
1.7	Многочлены от одной	Кольцо многочленов от одной переменной над	
1,	переменной Теория	областью целостности. Делимость многочлена на	
	делимости в кольце	двучлен и корни многочлена. Теорема о возможном	
	многочленов	наибольшем числе корней многочлена.	
	WITO O THE HOB	Многочлены над полем. Основные свойства	
		делимости многочленов. Теорема о делении	
		многочленов с остатком. НОД многочленов.	
		Теорема о существовании и нахождении НОД	
		многочленов. Взаимно простые многочлены и их	
		свойства. НОК многочленов и его вычисление.	
		Неприводимые над полем многочлены и их	
		основные свойства. Разложение многочлена в	
		произведение неприводимых множителей и его	
		единственность. Нахождение НОД и НОК	
		многочленов при помощи разложения на	
		неприводимые множители. Понятие производной	
		многочлена, основные свойства производных	
		многочленав, основные своиства производных многочленов. Вычисление значений многочлена и	
		его производных с помощью схемы Горнера.	
		Формула Тейлора. Неприводимые кратные	
		множители многочленов. Основная теорема о	
		кратности неприводимого множителя многочлена.	
		Понятие кратности корня многочлена. Основная	
		теорема о кратности корня многочлена. Отделение	
4.0	Muoroupou	неприводимых кратных множителей многочлена.	
1.8	Многочлены от нескольких	Построение кольца многочленов от п переменных.	
1	переменных	Степень и лексикографическое упорядочение	
		многочлена от п переменных. Условия равенства	
		многочленов от нескольких переменных. Поле	
		частных кольца многочленов. Неприводимые	
		многочлены от нескольких переменных. Теорема о	
		разложимости многочлена от нескольких	_
		переменных в произведение неприводимых	
		множителей и его единственность.	
1		Симметрические многочлены. Основная теорема о	
1		Симметрические многочлены. Основная теорема о симметрических многочленах. Теорема о	
		Симметрические многочлены. Основная теорема о симметрических многочленах. Теорема о единственности представления симметрического	
		Симметрические многочлены. Основная теорема о симметрических многочленах. Теорема о	

		<u> </u>	
1.10	Многочлены над полем действительных и комплексных чисел. Многочлены над полем рациональных чисел и алгебраические числа	Теорема о непрерывности многочлена с комплексными коэффициентами. Лемма о модуле старшего члена многочлена с комплексными коэффициентами. Теорема о существовании корня многочлена с комплексными коэффициентами (основная теорема алгебры). Разложение многочлена с комплексными коэффициентами в произведение линейных множителей. Связь между корнями и коэффициентами многочлена (формулы Виета). Сопряженность комплексных корней многочлена с действительными коэффициентами. Представление многочлена с действительными коэффициентами в виде произведения неприводимых множителей. Целые корни многочлена с целыми коэффициентами. Дробные рациональные корни многочлена с целыми коэффициентами. Понятие алгебраического числа и его минимального многочлена. Основные	_
		свойства минимального многочлена. Основные свойства минимального многочлена алгебраического числа. Понятие простого алгебраического расширения поля и его строение. Поле алгебраических чисел. Алгебраическая замкнутость поля алгебраических чисел. Понятие разрешимости уравнений в радикалах. Разрешимость в квадратных радикалах.	-
1.11	Важнейшие функции в теории чисел	Функции $ [x], \{x\} $ и их свойства. Мультипликативные функции. Число и сумма делителей натурального числа. Функция Мёбиуса. Функция Эйлера.	+
1.12	Основы теории сравнений	Основные понятия. Простейшие свойства сравнений. Полная и приведённая системы вычетов. Теоремы Эйлера и Ферма. Сравнения первой степени. Системы сравнений первой степени. Сравнения любой степени по простому и составному модулю. Сравнения второй степени. Символ Лежандра. Понятия первообразного корня и индекса	+
1.13	Натуральные числа	Понятие натурального ряда. Аксиоматическое построение системы натуральных чисел. О непротиворечивости аксиоматической теории натуральных чисел. Система аксиом Пеано и её свойства. Упорядоченное полукольцо натуральных чисел. Конечные и счётные множества.	+
1.14	Целые числа	Аксиоматическое построение кольца целых чисел как минимального расширения полукольца натуральных чисел. Существование системы целых чисел. Кольцо целых чисел как область целостности. Упорядоченное кольцо целых чисел.	+
1.15	Рациональные числа	Аксиоматическое построение поля рациональных чисел как минимального расширения кольца целых чисел. Существование поля рациональных чисел. Упорядоченное поле рациональных чисел. Представление рациональных чисел десятичными дробями.	+
1.16	Действительные числа	Аксиоматическое построение поля действительных чисел как минимального расширения поля рациональных чисел. Существование поля действительных чисел. Упорядоченное поле действительных чисел. Представление действительных чисел десятичными дробями. Другие определения системы действительных	+

+
+
+
+
+
+
-
-
_
-
-
-
_
_
_
_
_
_
_
-
-
-
-
_
_

		множителей многочлена.	
2.8	Многочлены от нескольких	Степень и лексикографическое упорядочение	
	переменных	многочлена от n переменных. Теорема о	
		разложимости многочлена от нескольких	
		переменных в произведение неприводимых	
		множителей и единственность такого разложения.	
		Симметрические многочлены. Основная теорема о	_
		симметрических многочленах. Теорема о	
		единственности представления симметрического	
		многочлена в виде многочлена от основных	
		симметрических многочленов.	
2.9	Многочлены над полем	Разложение многочлена с комплексными	
2.9			
	действительных и	коэффициентами в произведение линейных	
	комплексных чисел.	множителей. Связь между корнями и	
		коэффициентами многочлена (формулы Виета).	
		Сопряженность комплексных корней многочлена с	_
		действительными коэффициентами.	
		Представление многочлена с действительными	
		коэффициентами в виде произведения	
		неприводимых множителей. Решение уравнений	
		третьей и четвертой степени (в радикалах).	
2.10	Многочлены над полем	Целые корни многочлена с целыми	
	рациональных чисел и	коэффициентами. Дробные рациональные корни	
	алгебраические числа	многочлена с целыми коэффициентами. Критерий	
		неприводимости многочлена с целыми	
		коэффициентами. Понятие алгебраического числа	
		и его минимального многочлена. Основные	_
		свойства минимального многочлена	
		алгебраического числа. Строение простого	
		алгебраического расширения поля. Разрешимость	
		уравнений в радикалах. Разрешимость в	
		квадратных радикалах.	
2.11	Важнейшие функции в		
2.11	теории чисел	Φ ункции $[x]$, $\{x\}$ и их свойства.	
	теорий чисел	Мультипликативные функции. Число и сумма	+
		делителей натурального числа. Функция Мёбиуса.	'
		Функция Эйлера.	
2.12	Основы теории сравнений	Простейшие свойства сравнений. Полная и	
2.12	Основы теорий сравнений	приведённая системы вычетов. Теоремы Эйлера и	
		Ферма. Сравнения первой степени. Системы	
		сравнений первой степени. Сравнения любой	+
		степени по простому и составному модулю.	
		Сравнения второй степени. Символ Лежандра.	
		Понятия первообразного корня и индекса	
2.13	Натуральные числа	Система аксиом Пеано и её свойства.	+
		Упорядоченное полукольцо натуральных чисел.	•
2.14	Целые числа	Кольцо целых чисел как область целостности.	+
		Упорядоченное кольцо целых чисел.	Т
2.15	Рациональные числа	Упорядоченное поле рациональных чисел.	
		Представление рациональных чисел десятичными	+
		дробями.	
2.16	Действительные числа	Упорядоченное поле действительных чисел.	
	Total Street Block	Представление действительных чисел	+
		десятичными дробями.	'
2.17	Vолаппоконно пройнию н		
2.17	Комплексные, двойные и	Алгебраическая и тригонометрическая формы	
	дуальные числа	комплексного числа. Операции над комплексными	+
		числами в алгебраической и тригонометрической	
0.46	A 5	формах. Двойные и дуальные числа.	
2.18	Алгебры над полем	Системы кватернионов и гиперкомплексных чисел.	+
	действительных чисел		

13.2. Темы (разделы) дисциплины и виды занятий

ОФО

Nº	Наименование темы		E	Виды занятий (час	сов)	
п/п	паименование темы (раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
			2 семестр			
1.	Алгебраические структуры	8	8	0	16	32
2.	Матрицы и операции над ними	2	2	0	4	8
3.	Векторные пространства	4	4	0	8	16
4.	Системы линейных уравнений	4	4	0	8	16
	Всего во 2 семестре:	18	18	0	36	72
			3 семестр			
5.	Определители и их свойства	4	8	0	14	26
6.	Линейные преобразования и их свойства	4	6	0	14	24
7.	Многочлены от одной переменной. Теория делимости в кольце многочленов	8	14	0	14	36
8.	Многочлены от нескольких переменных	2	6	0	14	22
	Всего в 3 семестре:	18	34	0	56	108
			4 семестр			
9.	Многочлены над полем действительных и комплексных чисел.	4	4	0	6	14
10.	Многочлены над полем рациональных чисел и алгебраические числа	4	4	0	6	14
11.	Важнейшие функции в теории чисел	2	4	0	6	12
12.	Основы теории сравнений	10	10	0	6	26
13.	Натуральные числа	4	4	0	6	14
14.	Целые числа	4	4	0	6	14
15.	Рациональные числа	2	2	0	6	10
16.	Действительные числа	4	2	0	6	12
17.	Комплексные, двойные и дуальные числа	4	4	0	8	16
18.	Алгебры над полем действительных чисел	2	2	0	8	12
	Экзамен		•	•	•	36
	Всего в 4 семестре:	40	40	0	64	180
	Итого:	76	92	0	156	360

3ФО

Вид учебной работы		Трудоемкость					
			По семестрам				
		Всего	семестр №2	семестр №3	семестр №4	семестр №5	
Контактная работа		44	14	12	10	8	
D TOM LUADED:	лекции	20	6	6	4	4	
в том числе:	практические	24	8	6	6	4	
Самостоятельна	я работа	303	58	92	98	55	
Промежуточная аттестация – зачет с оценкой, экзамен		13	_	4	-	9	
V	Ітого:	360	72	108	108	72	

Nº	Наименование темы	Виды занятий (часов)				
п/п	(раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
			2 семестр		<u> </u>	
1.	Алгебраические структуры	2	3	0	18	23
2.	Матрицы и операции над ними	1	1	0	12	14
3.	Векторные пространства	1	1	0	16	18
4.	Системы линейных уравнений	2	3	0	12	17
	Всего во 2 семестре:	6	8	0	58	72
			3 семестр			
5.	Определители и их свойства	2	2	0	23	27
6.	Линейные преобразования и их свойства	1	1	0	23	25
7.	Многочлены от одной переменной. Теория делимости в кольце многочленов	2	2	0	23	27
8.	Многочлены от нескольких переменных	1	1	0	23	25
	Зачет с оценкой					4
	Всего в 3 семестре:	6	6	0	92	108
9.	Многочлены над полем действительных и комплексных чисел.	0,5	0,5	0	18	19
10.	Многочлены над полем рациональных чисел и алгебраические числа	0,5	0,5	0	18	19
11.	Важнейшие функции в теории чисел	0,5	0,5	0	8	9
12.	Основы теории сравнений	1	2	0	18	21
13.	Натуральные числа	0,5	0,5	0	18	19
14.	Целые числа	1	2	0	18	21
	Всего в 4 семестре:	4	6	0	98	108
			5 семестр			
15.	Рациональные числа	1	1	0	13	15
16.	Действительные числа	1	1	0	13	15
17.	Комплексные, двойные и дуальные числа	1	1	0	16	18
18.	Алгебры над полем действительных чисел	1	1	0	13	15
	Экзамен					9
	Всего в 5 семестре:	4	4		55	72
	Итого:	22	26	0	299	360

14. Методические указания для обучающихся по освоению дисциплины

Приступая к изучению учебной дисциплины, целесообразно ознакомиться с учебной программой дисциплины, электронный вариант которой размещён на сайте БФ ВГУ.

Знание основных положений, отраженных в рабочей программе дисциплины, поможет обучающимся ориентироваться в изучаемом курсе, осознавать место и роль изучаемой дисциплины в подготовке будущего выпускника, строить свою работу в соответствии с требованиями, заложенными в программе.

Основными формами контактной работы по дисциплине являются лекции и практические занятия, посещение которых обязательно для всех студентов (кроме студентов, обучающихся по индивидуальному плану).

Подготовка к практическим занятиям ведется на основе планов практических занятий. В ходе подготовки к практическим занятиям необходимо изучить в соответствии с вопросами для повторения конспекты лекций, основную литературу, ознакомиться с дополнительной литературой. Кроме того, следует повторить материал лекций, ответить

на контрольные вопросы, изучить образцы решения задач, выполнить упражнения (если такие предусмотрены).

При подготовке к промежуточной аттестации необходимо повторить пройденный материал в соответствии с учебной программой, примерным перечнем вопросов, выносящихся на аттестацию. Рекомендуется использовать конспекты лекций и источники, перечисленные в списке литературы в рабочей программе дисциплины, а также ресурсы электронно-библиотечных систем.

Для достижения планируемых результатов обучения используются интерактивные лекции, групповые дискуссии, анализ имитационных моделей.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1	Окунев Л.Я. Высшая алгебра: учеб СПб: Лань, 2009
2	Фаддеев Д.К., Соминский И.С. Задачи по высшей алгебре: учеб. пос. для вузов СПб: Лань, 2008

б) дополнительная литература:

7007	· · · · · · · · · · · · · · · · · · ·
№ п/п	Источник
3	Куликов Л.Я и др. Сборник задач по алгебре и теории чисел: - М.: Просвещение, 1993
4	Ляпин Е.С., Евсеев А.Е. Алгебра и теория чисел: учеб. пос.: ч. 1 М.: Просвещение, 1974
5	Ляпин Е.С., Евсеев А.Е. Алгебра и теория чисел: учеб. пос.: ч. 2 М.: Просвещение, 1978
6	Фадеев Д.К. Лекции по алгебре: учеб. пос. для вузов СПб: Лань, 2007
7	Шнеперман Л.Б. Курс алгебры и теории чисел в задачах и упражнениях: учеб. пос. для
,	педин-тов: ч. 2 Минск: Вышейш. шк., 1987
8	Шнеперман Л.Б. Сборник задач по алгебре и теории чисел: учеб. пос. дл педин-тов
0	Минск. Вышейш. шк., 1982

в) информационные электронно-образовательные ресурсы:

	ционные электронно-образовательные ресурсы:
№ п/п	Источник
9	Бондаренко, Ю.В.Линейная алгебра. Матрицы. Системы линейных уравнений [Электронный ресурс]: учебное пособие для вузов: [для проведения занятий по курсу линейной алгебры: для направления 080700 - Бизнес-информатика] / Ю.В. Бондаренко, К.В.Чудинова; Воронеж. гос. ун-т. — Электрон. текстовые дан. — Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2013. — Загл. с титул. экрана. — Свободный доступ из интрасети ВГУ. — Текстовый файл. — Windows 2000; Adobe Acrobat Reader. — URL: http://www.lib.vsu.ru/elib/texts/method/vsu/m13-103.pdf (22.06.2018).
10	Веселова, Л. В. Алгебра и теория чисел: учебное пособие: [16+] / Л. В. Веселова, О. Е. Тихонов; Казанский национальный исследовательский технологический университет. – Казань: Казанский научно-исследовательский технологический университет (КНИТУ), 2014. – 107 с.: ил. – Режим доступа: по подписке. – URL: https://biblioclub.ru/index.php?page=book&id=428287 – Библиогр. в кн. – ISBN 978-5-7882-1636-2. – Текст: электронный.
11	Вахитов, Р.Х. Фундаментальная и компьютерная алгебра [Электронный ресурс] : учебнометодическое пособие для вузов : [для студ. 1 к.днев.отд-нияфак. компьютер. наук, для направления 010200 - Математика и компьютер. науки]. Ч. 3. Алгебра многочленов / Р.Х.Вахитов, Е.В.Вахитова; Воронеж. гос. ун-т .— Электрон. текстовые дан. — Воронеж : Издательско-полиграфический центр Воронежского государственного университета, 2012 .—Загл. с титул. экрана .— Свободный доступ из интрасети ВГУ .— Текстовый файл .— Windows 2000 ; Adobe Acrobat Reader .— URL: http://www.lib.vsu.ru/elib/texts/method/vsu/m12-207.pdf (22.06.2018).
12	Алферова, З.В. Алгебра и теория чисел: учебно-методический комплекс / З.В. Алферова, Э.Л. Балюкевич, А.Н. Романников Москва: Евразийский открытый институт, 2011 279 с ISBN 978-5-374-00535-6; То же [Электронный ресурс]. — URL: http://biblioclub.ru/index.php?page=book&id=90645 .
13	Иванова, С. А. Линейная алгебра: учебное пособие: [16+] / С. А. Иванова, В. А. Павский; Кемеровский государственный университет. — 2-е изд., перераб. и доп. — Кемерово: Кемеровский государственный университет, 2019. — 125 с.: ил., табл. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=573547 — Текст: электронный.
14	Туганбаев, А. А. Линейная алгебра: учебное пособие / А. А. Туганбаев. – 2-е изд., стер. – Москва: ФЛИНТА, 2017. – 75 с. – Режим доступа: по подписке. – URL: https://biblioclub.ru/index.php?page=book&id=115141 – ISBN 978-5-9765-1407-2. – Текст: электронный.
	ЭУК «Теория чисел» https://edu.vsu.ru/course/view.php?id=6307

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Алексеева Т.И., Лободина Л.В. Руководство к решению задач по алгебре и теории чисел: - Борисоглебск: БГПИ, 2003

2	Алексеева, Т.И. Группы [Электронный ресурс]: учебное пособие для студентов заочной формы обучения.(специальность: 050201
3	Линейная алгебра с элементами аналитической геометрии. Практикум: учебнометодическое пособие для вузов. Ч. 1 / Воронеж. гос. ун-т; сост. Т.В. Рудченко.— Воронеж: ЛОП ВГУ, 2006.— 50 с.: ил. —Библиогр.: с.49-50.— <url: <a="" href="http://www.lib.vsu.ru/elib/texts/method/vsu/may07167.pdf">http://www.lib.vsu.ru/elib/texts/method/vsu/may07167.pdf (22.06.2018).</url:>
4	Протасов, Ю.М. Линейная алгебра и аналитическая геометрия. Курс лекций для студентов заочного отделения / Ю.М. Протасов М. : Флинта, 2012 168 с ISBN 9785976509566; То же [Электронный ресурс] URL: http://biblioclub.ru/index.php?page=book&id=115117 .
5	Сборник задач по алгебре: учеб. пос. для вузов/ под ред. А.И. Кострикина М.: Наука, 1987

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

При реализации дисциплины может использоваться смешанное обучение (электронный курс)

- ЭУК «Теория чисел» https://edu.vsu.ru/course/view.php?id=6307.

При реализации дисциплины используются информационно-справочные системы и профессиональные базы данных:

- Научная электронная библиотека http://www.scholar.ru/;
- Федеральный портал Российское образование http://www.edu.ru/;
- Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru/;
- Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru;
- Лекции ведущих преподавателей вузов России в свободном доступе https://www.lektorium.tv/;
- Электронно-библиотечная система «Университетская библиотека online» http://biblioclub.ru/.

18. Материально-техническое обеспечение дисциплины: Программное обеспечение:

- -Win10 (или Win7), OfficeProPlus 2010
- -браузеры: Yandex, Google, Opera, Mozilla Firefox, Explorer
- -STDU Viewer version 1.6.2.0
- -7-Zip
- -GIMP GNU Image Manipulation Program
- -Paint.NET
- -Tux Paint

Мультимедийное оборудование (проектор, ноутбук или стационарный компьютер, экран).

19. Оценочные средства для проведения текущего контроля успеваемости и промежуточной аттестации

Порядок оценки освоения обучающимися учебного материала определяется содержанием

следующих разделов дисциплины:

Nº ⊓/⊓	Наименование раздела дисциплины (модуля)	Компетен ция(и)	Индикатор (ы) достижени я компетенц ии	Оценочные средства
1.	Алгебраические структуры		ОПК-8.4	Практические и индивидуальные задания Контрольная работа № 1 Тестовые задания
2.	Матрицы и операции над ними	ОПК-8 ПК-3	ПК-3.1 ПК-3.2	Практические и индивидуальные задания Тестовые задания для самопроверки
3.	Векторные пространства			Практические и индивидуальные задания Контрольная работа № 1

			Индикатор (ы)	
№ п/п	Наименование раздела дисциплины (модуля)	Компетен ция(и)	(ы) достижени я компетенц ии	Оценочные средства
4.	Системы линейных уравнений			Практические и индивидуальные задания Контрольная работа № 1
5	Определители и их свойства			Практические и индивидуальные задания Домашняя контрольная работа
6	Линейные преобразования и их свойства			Практические и индивидуальные задания
7	Многочлены от одной переменной Теория делимости в кольце многочленов			Практические и индивидуальные задания
8	Многочлены от нескольких переменных			Практические и индивидуальные задания Контрольная работа № 2
9	Многочлены над полем действительных и комплексных чисел.			Практические и индивидуальные задания Контрольная работа № 2
10	Многочлены над полем рациональных чисел и алгебраические числа			Практические и индивидуальные задания
11	Важнейшие функции в теории чисел			Практические и индивидуальные задания
12	Основы теории сравнений			Контрольная работа № 3
13	Натуральные числа			Практические и индивидуальные задания Рефераты, доклады
14	Целые числа			Практические и индивидуальные задания Рефераты, доклады
15	Рациональные числа			Практические и индивидуальные задания Рефераты, доклады
16	Действительные числа			Практические и индивидуальные задания Рефераты, доклады
17	Комплексные, двойные и дуальные числа			Практические и индивидуальные задания Рефераты, доклады
18	Алгебры над полем действительных чисел			Практические и индивидуальные задания Рефераты, доклады
	Промежуточная а форма контроля – зачёт	-	кзамен	Перечень вопросов к зачёту с оценкой, экзамену

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств: практические и индивидуальные задания, тестовые задания для самопроверки рефераты, доклады, контрольные работы.

Тестовые задания (примерный вариант)

Выбрать один верный ответ (правильный ответ помечен *)

- 1. Всякое подмножество декартова квадрата множества А это:
- а) бинарное отношение на А*;
- б) отображение из А в А;
- в) унарное отношение на А;

- г) бинарная операция на А.
- 2. Делителем нуля называется такой элемент $a \neq 0$ множества A:
- а) который можно делить на нуль;
- б) на который можно делить нуль;
- в) для которого $(\exists x \neq 0, x \in A)(x \cdot a = a \cdot x = 0)$.*
- 3. Чтобы отображение было обратимо, необходимо и достаточно, чтобы оно было:
- а) инъективно;
- б) биективно*;
- в) сюръективно;
- г) просто было отображением.
- 4. Два целых числа называются сравнимыми по mod m, если:
- а) одно из них делится на другое нацело;
- б) оба делятся на m нацело;
- в) при делении на m дают одинаковые остатки*;
- г) при делении на т дают разные остатки.
- 5. В кольце классов вычетов по составному модулю (mod m):
- а) нет обратимых элементов;
- б) есть единственный обратимый элемент;
- в) обратимы те вычеты, которые в произведении дают вычет, равный 1;*
- г) все элементы обратимы.
- 6. Отображение структур $f:<Z,+,\circ>\to < N,+,\circ>$, не является изоморфизмом, так как:
- а) множества обозначены разными буквами;
- б) натуральных чисел «меньше», чем целых;
- в) первая структура образует кольцо, а вторая полукольцо*;
- г) на множествах заданы одинаковые операции.

Выбрать несколько верных ответов (правильные ответы помечены *)

- 7. В каждой группе операция:
- а) коммутативна;
- б) сократима*;
- в) обратима*;
- г) ассоциативна*.
- 8. Чтобы множество А с заданной на нем бинарной алгебраической операцией являлось группой, необходимо, чтобы операция была:
- а) ассоциативной*;
- б) коммутативной;
- в) обратимой*;
- г) дистрибутивной относительно самой себя.
- 9. Соответствие $f: Z \to Z$ $(\forall x \in Z) f(x) = -x$:
- а) не является отображением;
- б) является биекцией*;
- в) обратимо*;
- г) не сюръективно.
- 10. Если выполняется условие $(\forall a,b\in A)(a\circ b=b\circ a),$ то операция " \circ " на множестве А называется:
- а) ассоциативной;
- б) коммуникативной;

- в) коммутативной*;
- г) удовлетворяющей переместительному закону*.

Описание технологии выполнения задания

Тест выполняется в письменном виде после изучения соответствующего теоретического материала.

Критерии оценки:

Оценка «зачтено» ставится, если даны верные ответы на 7 и более вопросов, в противном случае студенту следует повторить соответствующий теоретический материал и повторить попытку.

Перечень практических заданий по алгебре и теории чисел (примеры)

1. Выяснить, какими свойствами обладает бинарная операция «о», заданная на множестве действительных чисел правилом:

$$(\forall a,b \in R) a \circ b = \frac{a+b}{2}$$
.

- 2. Выяснить, будут ли гомоморфны алгебры $\langle Z, + \rangle$ и $\langle 2Z, + \rangle$, если отображение $\varphi: Z \to 2Z$ задано по следующему правилу: $(\forall x \in Z) \varphi(x) = 2x$.
- 3. Вычислить f(A) , если $A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ -1 & 1 & 2 \end{pmatrix}$, $f(x) = x^3 2x + 7$
- 4. Вычислить определитель:

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & -4 & 3 \\ 1 & -4 & -1 & -2 \\ 1 & 3 & 2 & -1 \end{vmatrix}.$$

5. Исследовать систему на совместность и найти её решения методом Гаусса:

$$\begin{cases} 4x_1 - 3x_2 + 2x_3 - x_4 = 8, \\ 3x_1 - 2x_2 + x_3 - 3x_4 = 7, \\ 2x_1 - x_2 - 5x_4 = 6, \\ 5x_1 - 3x_2 + x_3 - 8x_4 = 1. \end{cases}$$

- 6. Установить, линейно зависима или нет система векторов $a_1 = (1; 2; 3)$, $a_2 = (1; -2; 3)$, $a_3 = (1; 2; -3)$ в соответствующем арифметическом пространстве над полем Q.
- 7. Найти фундаментальную систему решений однородной системы уравнений:

$$\begin{cases} 2x_1 - 3x_2 + 4x_3 - x_4 = 0, \\ 2x_1 - 3x_2 + 2x_3 + 3x_4 = 0, \\ 2x_1 - 3x_2 + 2x_3 - 11x_4 = 0. \end{cases}$$

- 8. Решить по формуле Кардано уравнение $x^3 + 18x + 15 = 0$.
- 9. Решить методом Феррари уравнение $x^4 2x^3 + 4x^2 2x + 3 = 0$.
- 10. Дополнить многочлен до симметрического, и выразить через основные симметрические многочлены $f = x_1^3 x_2 + \dots$
- 11. Найти рациональные корни многочлена $f(x) = x^4 + 4x^3 + 4x^2 + 1$.
- 12. Разложить многочлен f(x) на неприводимые множители над полями Q, R, C:

$$f(x) = x^4 + 4x^3 + 4x^2 + 1$$

- 13. Исключить иррациональность в знаменателе выражения $\frac{\alpha}{\alpha+1}$, $\alpha^3-3\alpha+1=0$.
- 14. Решить сравнение $2x \equiv 3 \pmod{5}$. Решить систему сравнений

$$x \equiv 3 \pmod{11}$$
, $x \equiv 5 \pmod{7}$;

Перечень практических заданий по линейной алгебре (примеры)

Тема 1. Матрицы и операции над ними

Вычислить произведения матриц:

$$A * B = \begin{pmatrix} 1-3 & 2 \\ 3-4 & 1 \\ 2-5 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 5 & 6 \\ 1 & 2 & 5 \\ 1 & 3 & 2 \end{pmatrix}; \qquad C * \mathcal{A} = \begin{pmatrix} 1 & 1 & 1 & -1 \\ -5-3-4 & 4 \\ 5 & 1 & 4 & -3 \\ -16-11-15 & 14 \end{pmatrix} \cdot \begin{pmatrix} 7-2 & 3 & 4 \\ 11 & 0 & 3 & 4 \\ 5 & 4 & 3 & 0 \\ 22 & 2 & 9 & 8 \end{pmatrix}.$$

Задание 2.

Привести матрицы к ступенчатому виду:

$$\begin{pmatrix} 1 & 0 & 4 & -1 \\ 2 & 1 & 11 & 2 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & -6 \end{pmatrix}, \begin{pmatrix} 3 & 2 & 4 & 4 & 5 & 2 \\ 7 & 5 & 9 & 8 & 9 & 3 \\ 5 & 3 & 7 & 9 & 4 & 3 \\ 6 & 5 & 7 & 5 - 5 - 3 \end{pmatrix}.$$

Найти А*В - В*А

$$A = \begin{pmatrix} 2 & 3 - 1 \\ -1 & 1 & 0 \\ 1 & 2 - 1 \end{pmatrix}; B = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 3 & 1 & 1 \end{pmatrix}.$$

Тема 2. Векторные пространства

Задание 1. Найти линейную комбинацию $3a_1 + 2a_2 - a_3$ следующих векторов:

$$a_1 = (1;2;3;-2), a_2 = (-1;1;4;5), a_3 = (-5;3;6;2).$$

Задание 2. Решить уравнение $3a_3 - 4x = 5a_1$. Векторы a_3, a_1 взять из предыдущего задания.

Задание 3. Выяснить, являются ли следующие векторы линейно независимыми $a_1 = (5;4;3,1), a_2 = (3;-1;2,2), a_3 = (8;1;3,2)$

Задание 4.

Выяснить, является ли системы векторов $\begin{cases} e_1 = (2;4;3;2), \\ e_2 = (4;2;2;8), \\ e_3 = (4;5;8;7), \end{cases}$ базисом пространства \mathbb{R}^4 . Найти $e_4 = (6;7;5;3)$

координаты вектора b= (18;24;13;6) в этом базисе.

Тема 3. Системы линейных уравнений

Задание 1. Решить систему уравнений методом Гаусса $\begin{cases} 3x_1 + 2x_2 + x_3 = 5, \\ x_1 + x_2 - x_3 = 0, \\ 4x_1 - x_2 + 5x_3 = 3. \end{cases}$

Задание 2. Найти фундаментальную систему решений и записать структуру общего решения $\begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 0, \end{cases}$

$$\begin{cases} 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0, \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0, \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0; \end{cases}$$

 $\begin{bmatrix} 3x_1 + 6x_2 + 24x_3 & 12x_4 & 2 \end{bmatrix}$. Задание 3. Найти матрицу, обратную данной $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \\ 1 & 3 & 1 \end{pmatrix}$.

Задание 4. Решить матричное уравнение $X \cdot A + 2 \cdot X = B + C \cdot X$,

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$

Тема 4. Определители и их свойства

Задание 1.

Задание 2. Дана матрица А. Докажите, что она имеет обратную, и найдите ее с помощью

алгебраических дополнений
$$A = \begin{pmatrix} 7 & -8 & 4 \\ 3 & 1 & -2 \\ 6 & -5 & 1 \end{pmatrix}$$

Задание 3. Вычислить ранг матрицы методом окаймляющих миноров

$$\begin{pmatrix}
1 & 3 & 5 & 0 \\
2 & 4 & 11 & 1 \\
3 & 6 & 12 & 3
\end{pmatrix}$$

Задание 4.

Докажите, что система $\begin{cases} 2x_1+x_3+x_4=7,\\ 3x_1-x_2+2x_3-x_4=13,\\ 6x_1+4x_2-x_3+3x_4=9, \end{cases}$ имеет единственное решение. Неизвестное x_3

найдите по формуле Крамера. Решите систему методом Гаусса.

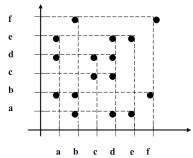
Тема 5. Линейные преобразования и операции над ними

Задание 1. В двумерном векторном пространстве с базисом (e_1,e_2) отображение φ переводит любой вектор с координатами (x; y) в вектор с координатами (3x - 2y; 2x + y). Установить, являются ли это отображение линейным оператором. Если да, то найти матрицу линейного оператора в стандартном базисе.

Задание 2. Найти матрицу линейного оператора, переводящего векторы b_1, b_2, b_3 соответственно

в векторы a_1, a_2, a_3 , относительно стандартного базиса e_1, e_2, \mathring{a}_3 : $a_1 = (1,2,1), a_2 = (2,3,3), a_3 = (3,7,1), b_1 = (3,1,4), b_2 = (5,2,1), b = (1,1,-6).$

Задание 3. Выяснить, будет ли линейным оператором отображение φ пространства \emph{R}^3 в себя, если для любого вектора $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ выполняется: $\varphi(x) = (x_2 + 2x_3, 2x_1 + x_3, x_1 + 2x_2)$. Если да, то найти матрицу линейного оператора в стандартном базисе.


Задание 4. Линейное отображение φ пространства V^2 в базисе $a_1=(2;1), a_2=(1;1)$ имеет матрицу $A = \begin{pmatrix} 3 & 5 \\ 2 & 3 \end{pmatrix}$. Найти матрицу того же отображения в базисе $b_1 = (5; 2), b_2 = (1; 0)$.

Перечень индивидуальных заданий по алгебре и теории чисел (примеры)

Тема Алгебраические структуры

Задача 1. На множестве $A=\{1, 2, 3, 4\}$ задано бинарное отношение α . Какими свойствами оно обладает: $\alpha = \{<1, 1>, <2, 2>, <3, 3>, <4, 4>, <1, 4>, <4, 1>, <3, 2>, <2, 3>\}?$ Построить граф и график отношения α .

Задача 2. По графику отношения α определить множество A, на котором оно задано, и свойства этого отношения:

Задача 3. По виду матрицы Δ определить бинарное отношение α , заданное на множестве $A = \{a, b, c, d\}$, и свойства этого бинарного отношения:

$$\Delta = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

Задача 4. Какими свойствами обладает бинарное отношение σ на множестве A, если:

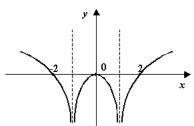
- a) $A = N u < a, b > \in \sigma \Leftrightarrow a < 2b$;
- b) A = N и $\langle a, b \rangle \in \sigma \Leftrightarrow (a + b)$ делится на 2;
- c) $A = N \ u < a, b > \in \sigma \Leftrightarrow a = b^2$?

Задача 5. Какое отношение эквивалентности задает разбиение множества целых чисел: классов разбиения бесконечное множество и в каждом классе содержится ровно одно целое число?

Задача 6. Построить по данному отношению эквивалентности σ разбиение множества $M = \{a, b, c, d\}$, если: $\sigma = \{\langle a, a \rangle; \langle b, b \rangle; \langle c, c \rangle; \langle d, d \rangle; \langle a, c \rangle; \langle c, a \rangle\}$.

Задача 7. Построить по данному разбиению множества $M = \{a, b, c, d\}$ отношение эквивалентности σ , если: $M_1 = \{a\}$; $M_2 = \{b, c\}$; $M_3 = \{d\}$.

Задача 8. Сколько различных отношений эквивалентности можно задать на множестве M, если: $M = \{a, b, c, d\}$; $M = \{1, 2, 3\}$?


Задача 9. Расположите следующие понятия по порядку по принципу: содержание каждого последующего понятия шире, чем содержание предыдущего:

бинарное отношение, рефлексивное отношение, декартов квадрат множества, отношение эквивалентности.

Задача 10. Проверить, является ли бинарное отношение f отображением, и если да, то обладает ли оно свойствами инъективности, сюръективности, биективности:

Задача 23. Доказать, что если существует биективное отображение множества на его собственное подмножество, то это множество бесконечно.

Задача 11. По виду графика определить, является ли соответствующая функция инъекцией, сюръекцией, биекцией:

Задача 12. (Группа переключателей). Назовем *переключателем* электрическую схему, имеющую три входа и три выхода, соединенные попарно в некотором порядке. Таких переключателей всего шесть (рис.1).

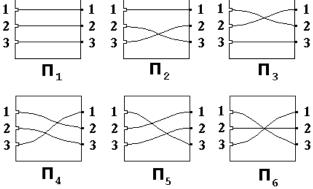


Рис. 1. Шесть переключателей

На множестве переключателей определим операцию «*» соединения переключателей.

Например, в результате соединения переключателей Π_2 и Π_3 (рис. 2) вход 1 будет соединен с выходом 2, вход 2 - с выходом 3, вход 3 - с выходом 1. Точно такое же соответствие между входами и выходами осуществляет переключатель Π_5 .

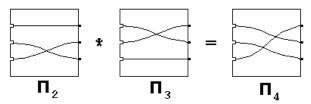


Рис.2. Результат соединения двух переключателей

Поэтому можно записать: $\Pi_2 * \Pi_3 = . \Pi_5$.

Доказать, что множество переключателей относительно операции «*» соединения переключателей образует группу. Будет ли эта группа абелевой?

Задача 13. Доказать, что множество всех наборов фиксированной длины *п*, составленных из 0 и 1, образует аддитивную группу по операции суммирования по модулю два. Что представляет собой элемент, противоположный произвольному элементу а этой группы?

Задача 14. Пусть $G=S_3$ - группа подстановок степени 3. Занумеруем ее элементы: g_1 =(1,2,3); g_2 =(1,3,2); g_3 =(2,1,3); g_4 =(2,3,1); g_5 =(3,1,2); g_6 =(3,2,1).

Найти все подгруппы в S_3 и выписать смежные классы по каждой из подгрупп. Будут ли найденные подгруппы являться нормальными делителями?

Задача 15. Всякий изоморфизм групп является биективным отображением одной группы на другую. Верно ли, что всякое биективное отображение одной группы на другую является их изоморфизмом?

Тема Алгебраическая замкнутость поля комплексных чисел

Задача 1. Запишите решения системы в алгебраической форме

a)
$$\begin{cases} z_1 - 3z_2 = i, \\ 2z_1 + z_2 = 1; \end{cases}$$
 b)
$$\begin{cases} z_1 + 2z_2 = 1 + i, \\ 3z_1 + iz_2 = 2 - 3i \end{cases}$$

Задача 2. Существуют ли такие действительные числа x и y, для которых числа z_1 и z_2 являются сопряжёнными: $z_1 = 8x^2 - 20i^{15}$, $z_2 = 9x^2 - 4 + 10yi^3$?

Задача 3. Сколько решений имеет система уравнений:

$$\begin{cases} |z| = 3, \\ |z - 1 + i| = 1; \end{cases}$$

Задача 4. Решить квадратное уравнение в комплексных числах: $z^2 + z + 1 = 0$; d) $z^2 - (3 + 2i)z + 6i = 0$.

Задача 5. Изобразить на комплексной плоскости множество точек, удовлетворяющих неравенству:

$$|z+1| > |z-2i|.$$

Задача 6. Найти все значения $\sqrt[n]{1}$ и показать, что они образуют геометрическую прогрессию. **Задача 12.** Вычислить:

$$\frac{(3+i\sqrt{3})^4}{\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^6}.$$

Темы Многочлены над полем действительных и комплексных чисел.

Многочлены над полем рациональных чисел и алгебраические числа

Задача 1. Найти значения всех элементов поля как расширение GF(2) по неприводимому многочлену $p(x) = x^3 + x + 1$.

Задача 2. Найти циклические порождающие полей GF(4), GF(9).

Задача 3. Найти все неприводимые многочлены степени два над полем GF(5).

Задача 4. Решить в поле GF(7) уравнение $x^4 = 3$.

Задача 5. Избавиться от иррациональности в знаменателе выражений:

$$\frac{1}{1+\sqrt{2}-\sqrt{3}};$$

Задача 6. Описать строение поля $K = Q(\alpha)$, где Q – поле рациональных чисел и найти элемент, обратный для элемента β :

$$\alpha = \sqrt{2 + \sqrt[3]{5}}, \quad \beta = \sqrt[3]{5} - \sqrt{2 + \sqrt[3]{5}};$$

Темы Многочлены от одной переменной. Многочлены от нескольких переменных. Теория делимости в кольце многочленов.

Задача1. Вычислить $f(x_0)$:

a)
$$f(x) = x^4 - 3x^3 + 6x^2 - 10x + 16$$
; $x_0 = 4$;

b)
$$f(x) = x^4 + 2x^3 - 3x^2 - 4x + 1$$
; $x_0 = -1$;

c)
$$f(x) = 5x^5 - 19x^3 - 7x^2 + 9x + 3$$
; $x_0 = 2$;

d)
$$f(x) = 3x^4 + 4x^3 + 5x^2 + x + 33$$
; $x_0 = -2$.

Задача 2. Докажите, что не существует многочлена P(x) с целыми коэффициентами, для которого одновременно выполняются условия: P(6) = 5 и P(14) = 9.

Задача 3. Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает значение два. Доказать, что ни в какой целой точке он не принимает значение три.

Задача 4. Какой остаток даёт $x + x^3 + x^9 + x^{27} + x^{81} + x^{243}$ при делении на (x - 1)?

Задача 5. Разложить многочлен f(x) по степеням двучлена (x-a), а также найти значение многочлена и всех его производных при x=a, если:

a)
$$f(x) = x^4 + 2x^3 - 7x^2 + 3x - 1$$
; $a = 2$

b)
$$f(x) = 2x^5 + x^2 + 1;$$
 $a = -3$

c)
$$f(x) = x^3 + 2ix^2 - 3;$$
 $a = 1$

d)
$$f(x) = x^5 + 7x^4 + 16x^3 + 8x^2 - 16x - 16$$
; $a = -2$

e)
$$f(x) = 4x^3 - 2x^2 + 5x - 1$$
; $a = -2$

Задача 6. Пользуясь формулами Виета, построить многочлен с действительными коэффициентами степени 4 со старшим коэффициентом 1, имеющий корни: простые корни 2, -1, 1+i и 1-i.

Задача 7. Найдите корни многочлена $f(x) = x^3 - 15x^2 + 74x - 120$, если известно, что один из его корней является средним арифметическим двух других корней.

Задача 8. Многочлен $x^{15}+1$ разлагается на следующие неприводимые сомножители: x+1, x^2+x+1 , x^4+x+1 , x^4+x^3+1 , $x^4+x^3+x^2+x+1$. Определить корни многочлена $x^{15}+1$ и распределить их по неприводимым сомножителям. В качестве делителя использовать многочлены: a) x^4+x+1 ; b) x^4+x^3+1 ; c) $x^4+x^3+x^2+x+1$.

Задача 9. Дополнить следующие многочлены до симметрических и выразить через основные симметрические многочлены:

1)
$$f = x_1^3 x_2 + \dots;$$

2)
$$f = x_1^3 x_2 x_3 + \dots;$$

3)
$$f = (x_1 + x_2)^2 + \dots;$$

4)
$$f = (x_1 + x_2) + \dots$$

Перечень индивидуальных заданий по линейной алгебре (примеры)

Задача 1. Решить систему уравнений путем нахождения обратной матрицы:

$$3x_1 + 2x_2 + x_3 = 5$$

$$x_1 - 2x_2 + 3x_3 = 6$$

1.1.
$$2x_1 + 3x_2 + x_3 = 1$$

1.2.
$$2x_1 + 3x_2 - 4x_3 = 20$$

$$2x_1 + x_2 + 3x_3 = 11$$

$$3x_1 - 2x_2 - 5x_3 = 6$$

Задача 2. Найти ранг матрицы методом окаймления миноров. Значения параметров взять из таблицы.

$$A = \begin{pmatrix} 2 & 1 & -1 & k_2 \\ -1 & 0 & k_1 & 5 \\ 2 & 14 & -3 & -3 \\ k_3 & 7 & 5 & -1 \end{pmatrix}$$

Задача 3. Решить однородную фундаментальную систему

k ₁	k ₂	k_3
-5	7	3
2	5	3

систему и найти её решений:

$$\begin{cases} x_1 - 4x_2 - 4x_3 + x_4 - 3x_5 = 0, \\ x_1 + 7x_2 + 6x_3 - 2x_4 + 6x_5 = 0, \\ 9x_1 + 8x_2 + 4x_3 - 3x_4 + 9x_5 = 0, \\ 7x_1 + 5x_2 + 2x_3 - 2x_4 + 6x_5 = 0 \end{cases}$$

$$2. \begin{cases} 2x_1 + 3x_2 + 5x_3 - 4x_4 + x_5 = 0, \\ x_1 - x_2 + 2x_3 + 3x_4 - 5x_5 = 0, \\ 3x_1 + 7x_2 + 8x_3 - 11x_4 - 3x_5 = 0, \\ 2x_1 + 3x_2 + 5x_3 - 4x_4 + x_5 = 0 \end{cases}$$

Задача 4. Найти общее решение системы линейных уравнений методом Гаусса

на 4. Пайти оощее решение системы линеин		ых уравнений методом гаусса		
		Система уравнений		Система уравнений
		$\begin{cases} x_1 + x_2 + 3x_3 - 2x_4 + 3x_5 = 4, \\ 2x_1 + 2x_2 + 4x_3 = 4, \end{cases}$		$\begin{cases} 2x_1 - 2x_2 + x_3 - x_4 + x_5 = 1, \\ x_1 + x_2 + x_3 - x_4 + x_5 = 1, \end{cases}$
	1	$\begin{cases} 2x_1 + 2x_2 + 4x_3 - x_4 + 3x_5 = 6, \\ 3x_1 + 3x_2 + 5x_3 - 2x_4 + 3x_5 = 6, \end{cases}$	2	$\begin{cases} x_1 + 2x_2 - x_3 + x_4 - 2x_5 = 1, \\ 4x_1 - 10x_2 + 5x_3 - 5x_4 + 7x_5 = 1, \end{cases}$
		$2x_1 + 2x_2 + 8x_3 - 3x_4 + 9x_5 = 14$		$2x_1 - 14x_2 + 7x_3 - 7x_4 + 11x_5 = -1$

Задача 5. Даны два множества, состоящие из матриц: $X = \left\{ \begin{pmatrix} a & 0 & b \\ c & 0 & d \\ e & f & g \end{pmatrix} \middle| a,b,c,d,e,f,g \in R \right\}$, и

$$Y = \left\{ egin{pmatrix} a & 0 & b \\ 0 & 0 & d \\ -b & -d & g \end{pmatrix} | a,b,d,g \in R \right\}$$
. Выяснить, образует ли множество X векторное пространство с

естественными операциями сложения и умножения на число. Доказать, что множество Y образует подпространство X.

Задача 6. Даны два множества, состоящие из многочленов: $X = \{\alpha x^6 + \beta x^4 + \gamma x^2 | \alpha, \beta, \gamma \in R\}$, $Y = \{\alpha x^6 - \alpha x^4 + \alpha x^2 | \alpha \in R\}$. Доказать, что множество X образует векторное пространство с естественными операциями сложения и умножения на число, а Y- его подпространство. Доказать, что в линейном вещественном пространстве многочленов степени $\leq n$ система векторов $1, x, x^2, \ldots, x^n$ составляет базис, и найти размерность этого пространства.

Задача 7. Найти какой-нибудь фундаментальный набор решений. Записать на его основе все

решения системы уравнений: $\begin{cases} 2x_1 + 3x_2 - 2x_3 - 5x_4 + x_5 = 0, \\ 4x_1 + 2x_2 + x_3 + 2x_4 - 3x_5 = 0, \\ -4x_2 + 5x_3 + 12x_4 - 5x_5 = 0, \\ -6x_1 - x_2 - 4x_3 - 9x_4 + 7x_5 = 0. \end{cases}$

Задача 8. Решить систему уравнений тремя способами (методом Гаусса, методом Крамера и матричным способом): $\begin{cases} 2x-4y+z=3,\\ x-5y+3z=-1,\\ x-y+z=1. \end{cases}$

Задача 9. Линейное отображение А пространства R^2 в базисе a_1 = (1;2), a_2 = (2;3) имеет матрицу $A_a = \begin{pmatrix} 3 & 5 \\ 4 & 3 \end{pmatrix}$, а линейное отображение В пространства R^2 в базисе b_1 = (3;1), b_2 = (4;2) имеет матрицу $B_b = \begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix}$. Найти матрицу линейного отображения A+B в базисе b_1 , b_2 .

Задача 10. Найти собственные значения и собственные векторы линейного оператора,

заданного матрицей $\begin{pmatrix} -1 & -5 & 2 \\ -1 & -2 & -1 \\ 4 & 5 & 1 \end{pmatrix}$.

Описание технологии выполнения задания

Индивидуальные задания могут быть предложены обучающимся, которые проявляют повышенный интерес к предмету, либо претендуют на итоговые оценки «хорошо» и «отлично», выполняется в письменном виде после изучения соответствующего теоретического материала.

Комплект тестовых заданий для самопроверки (примерные варианты)

Базовый уровень

Задание 1. Решите уравнение:

1.1)
$$\begin{vmatrix} 1 & 1 \\ -1 & 3 \end{vmatrix} x = \begin{vmatrix} 2 & -1 \\ 4 & 1 \end{vmatrix};$$

Варианты ответов:

- 1) x = -2/5;
- **2)** x = 6/5;
- 3) x = -3:
- **4)** $x = \frac{3}{2}$;

Задание 2. Вычислите определитель разложением по первой строке:

$$\begin{vmatrix} a & b & c \\ 1 & -2 & 0 \\ 3 & 1 & 2 \end{vmatrix}$$
;

Варианты ответов:

1)
$$-4a+2b-5c$$
;

2)
$$-2a-2b-2c$$
;

3)
$$-4a-2b+7c$$
.

Задание 3. Найдите матрицу X , удовлетворяющую условию , 2A+X=B где $A=\begin{pmatrix} 0 & 1 & 2 \\ -1 & 1 & 3 \end{pmatrix}$;

$$B = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 1 & 2 \end{pmatrix}.$$

Варианты ответов:

1)
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 8 \end{pmatrix}$$
;

$$2)\begin{pmatrix} -2 & 3 & 8 \\ -9 & 1 & 5 \end{pmatrix};$$

3)
$$\begin{pmatrix} 2 & 13 & 4 \\ -3 & 5 & 13 \end{pmatrix}$$
;

4)
$$\begin{pmatrix} 1 & -2 & -5 \\ 5 & -1 & -4 \end{pmatrix}$$
.

Задание 4. Даны матрицы

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 \\ 3 & -1 \\ -1 & 1 \end{pmatrix}$$

Найдите $C = A \cdot B$ и $D = B \cdot A$. Ответ должен состоять из пары чисел (c_{21}, d_{21}) , являющихся элементами матриц C и D соответственно.

Варианты ответов:

- 1) (-4, 2);
- 2) (0, 1);
- 3) (-7, 2);
- 4) (1, 3).

Задание 5. Найдите значение многочлена f(A)

от матрицы
$$A = \begin{pmatrix} 4 & -3 \\ 2 & 1 \end{pmatrix}$$
, если $f(x) = x^2 - 2x + 5$.

Указание. Пусть дан многочлен $f(x) = ax^2 + bx + c$ и квадратная матрица A. Тогда $f(A) = aA^2 + bA + cE$, где E – единичная матрица того же порядка, что и матрица A. Варианты ответов:

1)
$$\begin{pmatrix} 7 & -4 \\ 11 & -2 \end{pmatrix}$$
;

2)
$$\begin{pmatrix} 7 & -9 \\ 6 & -2 \end{pmatrix}$$
;

3)
$$\begin{pmatrix} 2 & -9 \\ 6 & -7 \end{pmatrix}$$
.

Задание 6. Найдите матрицу, обратную матрице А (с помощью элементарных преобразований)

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 2 \\ -1 & 3 & 1 \end{pmatrix}.$$

Ответ должен состоять из тройки чисел (α, β, γ), каждое из которых равно сумме элементов, соответственно, первой, второй и третьей строк обратной матрицы.

Варианты ответов:

Повышенный уровень

Задание 1. Решите неравенство:

$$\begin{vmatrix} 2 & x+2 & -1 \\ 1 & 1 & -2 \\ 5 & -3 & x \end{vmatrix} > 0.$$

Варианты ответов:

1)
$$x \in (-\infty; -6) \cup (-4; +\infty);$$

2)
$$x = -2$$
;

3)
$$x \in (-6, -4)$$
;

4)
$$x \in (4; 6);$$

Задание 2. Найдите значения а (если они существуют), при которых систему

$$\begin{cases} 2x - 5y = 1, \\ ax + 5y = -2a - 5 \end{cases}$$
 можно решить методом Крамера.

Варианты ответов:

- **1)** при $a \neq 2$;
- 2) при $a \neq -2$;
- 3) при любом *a;*
- 4) ни при каких а систему нельзя решить методом Крамера.

Задание 3. Систему уравнений из задания 4 решите методом Крамера, используя формулы

$$x=rac{\Delta x}{\Delta}$$
 , $y=rac{\Delta y}{\Delta}$. Ответ должен состоять из тройки чисел $(x,y,\Delta x+\Delta y)$.

Варианты ответов:

Задание 4. Даны матрицы $A_{n \times m}$ и $B_{k \times p}$. Какие четвёрки чисел (n, m, k, p) характеризующие размеры матриц A и B, обеспечивают существование произведения матрицы AB? Варианты значений (n, m, k, p):

Задание 5. Определите размеры матрицы $C = A \cdot B$, если A и B согласованные матрицы из задания 4.

Варианты ответов:

- 1) 3×4 ;
- 2) 4×6 ;
- 3) 6×4 .

Задание 6. Определите, при каком значении α существует матрица, обратная данной:

$$\begin{pmatrix} \alpha - 1 & 3 & 4 \\ 0 & \alpha - 1 & -1 \\ 0 & 0 & 5 \end{pmatrix}.$$

Варианты ответов:

- 1) $\alpha = \sqrt{5}$;
- 2) $\alpha \neq -1$;
- 3) при любом α ;
- 4) $\alpha \neq 1$.

Задание 7. Пусть A и B – невырожденные матрицы. Решите матричное уравнение AXB = C. Варианты ответов:

- 1) $A^{-1}CB^{-1}$;
- 2) $\frac{C}{AB}$;
- 3) $CA^{-1}B^{-1}$;
- 4) $A^{-1}B^{-1}C$.

Задание 8. При каких значениях α ранг r(A) матрицы $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha+2 & 0 \\ 0 & 0 & \alpha^2-4 \end{pmatrix}$ равен 1:

Варианты ответов:

- 1) $\alpha = 2$;
- 2) $\alpha \neq \pm 2$;
- 3) $\alpha = -2$.

Задание 9. Найдите решения системы $Ax=\theta$ с матрицей $A=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & 5 & 0 \end{pmatrix}$, для которого

 $x_4 = -1$. Ответ должен состоять из четверки чисел (x_1, x_2, x_3, x_4) .

Варианты ответов:

- 1) (-6, 1, 1, -1);
- 2) (6, -1, 0, -1);
- 3) (3, 1, 0, -1).

материала.

Описание технологии выполнения задания

Тесты для самопроверки могут выполняться студентами как самостоятельно с последующей сверкой с ключом, так и в парах, с последующей проверкой вариантов друг друга. Цель проведения таких тестов – выявление пробелов в знаниях и определение уровня усвоения

Перечень заданий для контрольных работ Комплект заданий для контрольной работы №1

Примерный вариант

Тема Алгебраические структуры

Задание 1. Определить, какой алгебраической структурой является множество $A = \{2^n | n \in Z\}$ по операции обычного умножения.

Тема Алгебраические структуры

Задание 2. Выяснить, будут ли гомоморфны алгебры $\langle Z, + \rangle$ и $\langle 2Z, + \rangle$, если отображение $\varphi: Z \to 2Z$ задано по следующему правилу: $(\forall x \in Z) \varphi(x) = 2x$.

Тема Системы линейных уравнений

Задание 3. Исследовать систему на совместность и найти её решения методом Гаусса:

$$\begin{cases} 4x_1 - 3x_2 + 2x_3 - x_4 = 8, \\ 3x_1 - 2x_2 + x_3 - 3x_4 = 7, \\ 2x_1 - x_2 - 5x_4 = 6, \\ 5x_1 - 3x_2 + x_3 - 8x_4 = 1. \end{cases}$$

Описание технологии выполнения задания

Контрольная работа выполняется в письменном виде после изучения соответствующего теоретического материала, по вариантам аудиторно.

Критерии оценки:

Оценка «отлично» ставится, если все задания выполнены верно, получены правильные численные ответы, все преобразования выполнены верно.

Оценка «хорошо» ставится, если все преобразования выполнены верно, однако в вычислениях допущены незначительные ошибки, либо если при верном ходе рассуждений одно из заданий не доведено до конца.

Оценка «удовлетворительно» ставится, если в проводимых преобразованиях выполнены необоснованные или неверные шаги, в вычислениях допущены ошибки, либо полностью не выполнено одно из заданий.

Оценка «неудовлетворительно» ставится, если в проводимых преобразованиях выполнены неверно, в вычислениях допущены ошибки, либо полностью не выполнены два задания.

Комплект заданий для контрольной работы № 2 (домашняя контрольная работа) *Примерный вариант*

Тема Многочлены над полем действительных и комплексных чисел

Задание 1. Решить по формуле Кардано уравнения:

$$x^3 + 18x + 15 = 0$$
.

Задание 2. Решить методом Феррари уравнения:

$$x^4 - 2x^3 + 4x^2 - 2x + 3 = 0$$
.

Тема Многочлены от нескольких переменных

Задание 3. Дополнить, если нужно, следующие многочлены до симметрических, и выразить через основные симметрические многочлены:

$$f = x_1^3 x_2 + x_1^3 x_3 + x_1 x_2^3 + x_1 x_3^3 + x_2^3 x_3 + x_2 x_3^3$$
.

Тема Многочлены над полем рациональных чисел и алгебраические числа

Задание 4. Найти рациональные корни многочлена:

$$f(x) = x^4 + 4x^3 + 4x^2 + 1.$$

Тема Алгебраическая замкнутость поля комплексных чисел

Задание 5. Исключить иррациональность в знаменателе выражения:

$$\frac{7}{1-\sqrt[4]{2}+\sqrt{2}}$$

Описание технологии выполнения задания

Домашняя контрольная работа выполняется в письменном виде после изучения соответствующего теоретического материала, по вариантам.

Критерии оценки:

Оценка «отлично» ставится, если все задания выполнены верно, получены правильные численные ответы, все преобразования выполнены верно.

Оценка «хорошо» ставится, если все преобразования выполнены верно, однако в вычислениях допущены незначительные ошибки, либо если при верном ходе рассуждений одно из заданий не доведено до конца.

Оценка «удовлетворительно» ставится, если в проводимых преобразованиях выполнены необоснованные или неверные шаги, в вычислениях допущены ошибки, либо полностью не выполнено одно из заданий.

Оценка «неудовлетворительно» ставится, если проводимые преобразования выполнены неверно, в вычислениях допущены ошибки, либо полностью не выполнены три задания.

Комплект заданий для контрольной работы № 3

```
Задание 1. Решить сравнения:
 2x \equiv 3 \pmod{5};
 3x \equiv 4 \pmod{7};
 7x \equiv 10 \pmod{11};
12x \equiv 7 \pmod{13};
7x \equiv 11 \pmod{15};
5x \equiv 3 \pmod{17};
 3x \equiv 5 \pmod{11};
9x \equiv 2 \pmod{14};
Задание 2. Решить системы сравнений:
 x \equiv 3 \pmod{11},
 x \equiv 5 \pmod{7};
  (x \equiv 6 \pmod{7}),
 x \equiv 2 \pmod{13};
 (x \equiv 3 \pmod{17}),
 3x \equiv 6 \pmod{9};
   x \equiv 7 \pmod{11},
   x \equiv 3 \pmod{10},
 x \equiv 2 \pmod{3};
Задание 3. С помощью символа Лежандра установить, имеют ли решения сравнения:
x^2 \equiv 404 \pmod{523};
x^2 \equiv 99 \pmod{601};
x^2 \equiv 219 \pmod{383};
x^2 \equiv 47 \pmod{73};
x^2 \equiv 231 \pmod{101};
Задание 4. Заменить данные сравнения равносильными им сравнениями, степени которых ниже
р, где р-модуль:
 x^8 - 3x^7 + 2x^6 + 3x^4 - 2x^2 - 1 \equiv 0 \pmod{5};
x^{13}-x^3+x-3 \equiv 0 \pmod{11}:
x^8-2x^7+3x^6+x^5-2x^2-x-3\equiv 0 \pmod{5};
x^9 - 3x^4 + 2x^3 - x + 3 \equiv 0 \pmod{7};
x^{10} + 3x^5 - 4x^3 + x^2 - 3 \equiv 0 \pmod{7};
Задание 5.
      1. Найти остаток от деления числа 48^{5n+3} на 11, где
```

Описание технологии выполнения задания

n — любое целое неотрицательное число.

Контрольная работа выполняется в письменном виде после изучения соответствующего теоретического материала, по вариантам, аудиторно.

Критерии оценки:

Оценка «отлично» ставится, если все задания выполнены верно, получены правильные численные ответы, все преобразования выполнены верно.

Оценка «хорошо» ставится, если все преобразования выполнены верно, однако в вычислениях допущены незначительные ошибки, либо если при верном ходе рассуждений одно из заданий не доведено до конца.

Оценка «удовлетворительно» ставится, если в проводимых преобразованиях выполнены необоснованные или неверные шаги, в вычислениях допущены ошибки, либо полностью не выполнено одно из заданий.

Оценка «неудовлетворительно» ставится, если в проводимых преобразованиях выполнены неверно, в вычислениях допущены ошибки, либо полностью не выполнены три задания.

Темы докладов и рефератов (примерные)

- 1. Различные формы принципа математической индукции
- 2. Системы с основным множеством целых чисел
- 3. Изоморфные отображение упорядоченного поля действительных чисел
- 4. р-адические числа
- 5. Нормированные поля
- 6. Алгебраические и трансцендентные числа
- 7. Основные принципы расширения числовых систем
- 8. Числовые системы в школьном курсе математики

Описание технологии выполнения задания

Реферат выполняется в письменном виде после изучения соответствующего теоретического материала.

Критерии оценки:

- оценка **«отлично»** выставляется за самостоятельно написанный реферат по теме; умение излагать материал последовательно и грамотно, делать необходимые обобщения и выводы;
- оценка **«хорошо»** ставится, если: реферат удовлетворяет в основном требованиям на оценку «отлично», но при этом имеет один из недостатков: в изложении: допущены небольшие пробелы, не исказившие содержание реферата; допущены один—два недочета при освещении основного содержания темы, исправленные по замечанию преподавателя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов, которые легко исправляются по замечанию преподавателя. В реферате может быть недостаточно полно развернута аргументация;
- оценка **«удовлетворительно»** ставится, если: неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения материала; имелись затруднения или допущены ошибки в определении понятий, использовании терминологии, исправленные после замечаний преподавателя; студент не может применить теорию в новой ситуации;
- оценка **«неудовлетворительно»** ставится, если: не раскрыто основное содержание учебного материала; обнаружено незнание или непонимание большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании терминологии, которые не исправлены после нескольких замечаний преподавателя; нарушена логика в изложении материала, нет необходимых обобщений и выводов; недостаточно сформированы навыки письменной речи; реферат является плагиатом других рефератов более чем на 90%.

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Зачет с оценкой выставляется по результатам работы во 2 и 3 семестрах:

Соотношение показателей, критериев и шкалы оценивания результатов обучения на зачете с оценкой

Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Обучающийся способен применять теоретические знания для решения типовых расчётных задач и практических заданий более высокого уровня сложности в области алгебры и теории чисел; активно работал в течение всего семестра; вовремя и успешно выполнял индивидуальные задания	Повышенный уровень	Отлично
Обучающийся способен применять теоретические знания при решении типовых расчётных задач, допускает незначительные ошибки при решении практических заданий более высокого уровня сложности в области алгебры и теории чисел; работал в течение всего семестра; вовремя и успешно выполнял индивидуальные задания.	Базовый уровень	Хорошо
Обучающийся в ряде случаев затрудняется применять теоретические знания при решении типовых расчётных задач, не всегда способен решить практические задания более высокого уровня сложности в области алгебры и теории чисел; не проявлял особой активности в течение семестра; не систематически выполнял индивидуальные задания.	Пороговый уровень	Удовлетвори- тельно
Обучающийся допускает грубые ошибки при решении типовых задач либо не имеет представления о способе их решения; не работал в течение семестра; систематически не выполнял индивидуальные задания.	-	Неудовлетвори- тельно

Перечень вопросов к экзамену по всему курсу:

- 1. Бинарные отношения и их свойства.
- 2. Кольцо многочленов от одной переменной над областью целостности.
- 3. Алгебраические операции на множествах и их основные свойства.
- 4. Линейная зависимость (независимость) векторов линейного пространства. Конечномерные и бесконечномерные линейные пространства. Базис.
- 5. Определители квадратной матрицы. Свойства определителей.
- 6. Линейные пространства, примеры. Аксиомы линейного пространства. Элементарные следствия из аксиом линейного пространства.
- 7. Решение матричных уравнений. Решение систем линейных уравнений матричным способом.
- 8. Элементарные преобразования матриц. Алгоритм приведения матрицы к ступенчатому виду.
- 9. Разложение определителей по строке и столбцу. Вычисление определителей n-го порядка. Условие вырожденности квадратной матрицы.
- 10. Основные свойства линейной зависимости векторов линейного пространства. Подпространства линейного пространства.
- 11. Миноры и алгебраические дополнения. Вычисление ранга матрицы методом окаймляющих миноров.
- 12. Умножение матриц и их свойства. Степень матрицы. Транспонированная матрица.
- 13. Решение систем линейных уравнений методом Крамера. Сведение систем линейных уравнений к крамеровской системе.
- 14. Линейные операции над матрицами и их свойства.
- 15. Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.
- 16. Матрицы, их размерность. Матрицы специального назначения.
- 17. Элементарные преобразования систем линейных уравнений. Метод Гаусса.
- 18. Нахождение обратной матрицы с помощью алгебраических дополнений.
- 19. Системы линейных уравнений, основные понятия. Равносильность систем линейных уравнений.
- 20. Нахождение обратной матрицы методом элементарных преобразований.
- 21. Однородная система линейных уравнений, ее фундаментальная система решений.
- 22. Ранг матрицы. Нахождение ранга и базиса системы векторов. Изоморфизм линейных пространств.
- 23. Делимость многочлена на двучлен (х-а). Теорема Безу и корни многочлена.

- 24. Алгебраические структуры с одной бинарной операцией: группоид, полугруппа, моноид, группа. Примеры. Простейшие свойства групп.
- 25. Теорема о возможном наибольшем числе корней многочлена.
- 26. Алгебраические структуры с двумя бинарными операциями: полукольцо, кольцо, поле, их простейшие свойства. Примеры.
- 27. Многочлены над полем. Основные свойства делимости многочленов над полем.
- 28. Гомоморфизм и изоморфизм групп, колец и полей.
- 29. Теорема о делении многочленов с остатком. НОД многочленов. Теорема о существовании и нахождении НОД многочленов. НОК многочленов и его вычисление.
- 30. Приводимые и неприводимые над полем многочлены и их основные свойства.
- 31. Разложение многочлена в произведение неприводимых множителей и его единственность. Нахождение НОД и НОК многочленов при помощи разложения на неприводимые множители.
- 32. Понятие производной многочлена, основные свойства производных многочленов. Вычисление значений многочлена и его производных с помощью схемы Горнера. Формула Тейлора.
- 33. Неприводимые кратные множители и корни многочленов. Основная теорема о кратности неприводимого множителя многочлена. Отделение неприводимых кратных множителей многочлена.
- 34. Теорема о существовании корня многочлена с комплексными коэффициентами (основная теорема алгебры). Следствия из неё.
- 35. Связь между корнями и коэффициентами многочлена (формула Виета).
- 36. Сопряженность комплексных корней многочлена с действительными коэффициентами. Многочлены, неприводимые над полем действительных чисел.
- 37. Решение уравнений третьей и четвертой степени (в радикалах).
- 38. Целые и рациональные корни многочлена с целыми коэффициентами. Критерий неприводимости многочлена с целыми коэффициентами.
- 39. Многочлены с действительными коэффициентами. Неприводимость многочленов с действительными коэффициентами.
- 40. Построение кольца многочленов от п переменных.
- 41. Степень и лексикографическое упорядочение многочлена от n переменных. Понятие приводимого многочлена от n переменных. Теорема о разложимости многочлена от n переменных в произведение неприводимых множителей и его единственность.
- 42. Симметрические многочлены. Основная теорема о симметрических многочленах. Теорема о единственности представления симметрического многочлена в виде многочлена от основных симметрических многочленов.
- 43. Простейшие свойства делимости целых чисел. НОД и НОК целых чисел и их свойства. Алгоритм Евклида. Непрерывные дроби и их связь с алгоритмом Евклида..
- 44. Простые числа и их роль в кольце целых чисел. Каноническая форма целого числа. Теорема о единственности разложения на простые множители.
- 45. Сравнения второй степени. Символ Лежандра.
- 46. Функции $\lfloor x \rfloor$, $\{x\}$ и их свойства. Мультипликативные функции. Число и сумма делителей натурального числа.
- 47. Аксиоматическое построение поля действительных чисел как минимального расширения поля рациональных чисел. Существование поля действительных чисел. Упорядоченное поле действительных чисел.
- 48. Функция Мёбиуса. Функция Эйлера.
- 49. Представление действительных чисел десятичными дробями. Другие определения системы действительных чисел: с помощью понятий сечения и верхней границы; с помощью понятия фундаментальной последовательности.
- 50. Основные понятия теории сравнений. Простейшие свойства сравнений. Полная и приведённая системы вычетов.
- 51. Понятие натурального ряда. Аксиоматическое построение системы натуральных чисел. О непротиворечивости аксиоматической теории натуральных чисел.
- 52. Теоремы Эйлера и Ферма.
- 53. Система аксиом Пеано и её свойства. Упорядоченное полукольцо натуральных чисел. Конечные и счётные множества.
- 54. Сравнения первой степени. Системы сравнений первой степени.

- 55. Аксиоматическое построение кольца целых чисел как минимального расширения полукольца натуральных чисел. Существование системы целых чисел.
- 56. Сравнения любой степени по простому и составному модулю.
- 57. Аксиоматическое построение поля рациональных чисел как минимального расширения кольца целых чисел. Существование поля рациональных чисел.
- 58. Понятия первообразного корня и индекса. Первообразные корни по модулям p^{α} и $2p^{\alpha}$.
- 59. Упорядоченное поле рациональных чисел. Представление рациональных чисел десятичными дробями.
- 60. Понятия и основные свойства числовых и алгебраических систем.
- 61. Алгебраическая и тригонометрическая формы комплексного числа. Операции над комплексными числами в алгебраической и тригонометрической формах. Двойные и дуальные числа.
- 62. Системы кватернионов и гиперкомплексных чисел. Общий взгляд на действительные, комплексные числа и кватернионы. Предел расширения числовых систем. Теорема Фробениуса.

Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения на экзамене используются следующие показатели:

- 1) знание основ и закономерностей алгебры и теории чисел;
- 2) умение связывать теорию с практикой;
- 3) навыки решения стандартных задач по алгебре и теории чисел.

Для оценивания результатов обучения на экзамене используется 4-балльная шкала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Соотношение показателей, критериев и шкалы оценивания результатов обучения на экзамене.

экзамене.		
Критерии оценивания компетенций	Уровень сформирован ности компетенций	Шкала оценок
Обучающийся в полной мере владеет теоретическими основами алгебры и теории чисел, способен иллюстрировать ответ примерами, фактами, данными научных исследований, применять теоретические знания для решения типовых расчётных задач и практических заданий более высокого уровня сложности в области алгебры и теории чисел	Повышенный уровень	Отлично
Обучающийся владеет теоретическими основами алгебры и теории чисел, способен иллюстрировать ответ примерами, фактами, применять теоретические знания при решении типовых расчётных задач, допускает незначительные ошибки при решении практических заданий более высокого уровня сложности в области алгебры и теории чисел.	Базовый уровень	Хорошо
Обучающийся владеет частично теоретическими основами алгебры и теории чисел, фрагментарно способен иллюстрировать ответ примерами, фактами, в ряде случаев затрудняется применять теоретические знания при решении типовых расчётных задач, не всегда способен решить практические задания более высокого уровня сложности в области алгебры и теории чисел.	Пороговый уровень	Удовлетвори- тельно
Ответ на контрольно-измерительный материал не соответствует любым трем из перечисленных показателей. Обучающийся демонстрирует отрывочные, фрагментарные знания, допускает грубые ошибки при решении типовых задач либо не имеет представления о способе их решения.	-	Неудовлетвори- тельно

По решению преподавателя студентам могут даваться дополнительные зачетные задания, а также проводиться тестирование.

Полностью база тестовых заданий для проверки сформированности компетенций, а также критерии оценки представлены в Приложении 10 «Фонд оценочных средств» к описанию основной образовательной программы 44.03.05 Педагогическое образование (с двумя профилями

дготовки), профили Ма ⁻ змещенном на сайте БФ	ры у <u>пцрs.//bsr</u>	<u>(.vsu.ru/sveden/</u>	education.	